YoVDO

A Geometric Model for the Bounded Derived Category of a Gentle Algebra - Sibylle Schroll Lecture 3

Offered By: Hausdorff Center for Mathematics via YouTube

Tags

Mathematics Courses Algebra Courses Representation Theory Courses Cluster Algebras Courses

Course Description

Overview

Explore the third lecture in a series on geometric models for bounded derived categories of gentle algebras. Delve into the construction of a geometric model that encodes both a marked surface and a line field, providing a complete derived invariant for gentle algebras. Examine how this model extends the Avella-Alaminos and Geiss derived invariant. Discover explicit examples connecting the geometric model to the partially wrapped Fukaya category as described in the work of Haiden, Katzarkov, and Kontsevich. Gain insights into the role of gentle algebras in cluster algebras and homological mirror symmetry, and understand their significance in representing Jacobian algebras of quivers with potentials from triangulated marked surfaces.

Syllabus

A geometric model for the bounded derived category of a gentle algebra, Sibylle Schroll Lecture 3


Taught by

Hausdorff Center for Mathematics

Related Courses

Introduction to Galois Theory
Higher School of Economics via Coursera
MIP* = RE Part 1 - The Quantum Low-Degree Test
Simons Institute via YouTube
The One Dimensional Random Walk Hypergroup - Diffusion Symmetry
Insights into Mathematics via YouTube
Change of Basis and Taylor Coefficient Vectors - Wild Linear Algebra A - NJ Wildberger
Insights into Mathematics via YouTube
Representation Theory & Combinatorics of the Symmetry Group and Related Structures - Monica Vazirani
Institute for Advanced Study via YouTube