A Finiteness Theorem for Gromov-Hyperbolic Groups
Offered By: Stony Brook Mathematics via YouTube
Course Description
Overview
Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a rigorous mathematical lecture on the finiteness theorem for Gromov-hyperbolic groups presented by Gérard Besson from CNRS - Université Grenoble Alpes. Delve into the proof that there exists a finite number of isomorphism classes of marked groups (Γ,Σ) satisfying specific conditions: δ-hyperbolic, torsion-free, non-cyclic, and with entropy bounded by a given value H. Gain insights into key concepts such as δ-hyperbolicity, torsion-free groups, and entropy in the context of finitely generated groups with symmetric finite generating sets. Follow along as Besson breaks down the abstract, explains crucial terminology, and provides an overview of the proof's key elements in this Stony Brook University Mathematics Colloquium talk.
Syllabus
A Finiteness Theorem for Gromov-Hyperbolic Groups - Gérard Besson
Taught by
Stony Brook Mathematics
Related Courses
Алгебраическая теория графовNovosibirsk State University via Coursera Group Theory
Brilliant Groupes finis : les mathématiques du Rubik's cube
Université de Strasbourg via France Université Numerique Introduction à la théorie de Galois
École normale supérieure via Coursera Théorie des Groupes (partie 1) - Une introduction à la théorie des catégories
École Polytechnique Fédérale de Lausanne via edX