A Finiteness Theorem for Gromov-Hyperbolic Groups
Offered By: Stony Brook Mathematics via YouTube
Course Description
Overview
Explore a rigorous mathematical lecture on the finiteness theorem for Gromov-hyperbolic groups presented by Gérard Besson from CNRS - Université Grenoble Alpes. Delve into the proof that there exists a finite number of isomorphism classes of marked groups (Γ,Σ) satisfying specific conditions: δ-hyperbolic, torsion-free, non-cyclic, and with entropy bounded by a given value H. Gain insights into key concepts such as δ-hyperbolicity, torsion-free groups, and entropy in the context of finitely generated groups with symmetric finite generating sets. Follow along as Besson breaks down the abstract, explains crucial terminology, and provides an overview of the proof's key elements in this Stony Brook University Mathematics Colloquium talk.
Syllabus
A Finiteness Theorem for Gromov-Hyperbolic Groups - Gérard Besson
Taught by
Stony Brook Mathematics
Related Courses
An Introduction to Hyperbolic GeometryIndian Institute of Technology Kanpur via Swayam From Hyperbolic Geometry to Data Clustering
Open Data Science via YouTube Petrie Polygons of a Polyhedron - Universal Hyperbolic Geometry
Insights into Mathematics via YouTube The Remarkable Platonic Solids I - Universal Hyperbolic Geometry
Insights into Mathematics via YouTube Perpendicularity, Polarity and Duality on a Sphere - Universal Hyperbolic Geometry
Insights into Mathematics via YouTube