YoVDO

A Construction of Apéry Constants from Landau Ginzberg Models

Offered By: IMSA via YouTube

Tags

Number Theory Courses Algebraic Geometry Courses Riemann Zeta Function Courses K3 Surfaces Courses

Course Description

Overview

Explore a mathematical lecture delving into the construction of Apéry constants from Landau-Ginzberg models. Discover how the irrationality of the Riemann zeta function at 3 was proven by R. Apéry through rapidly converging sequences, and learn about its connection to the holomorphic period function of K3 surfaces. Examine V. Golyshev's work on special L-function values for Fano threefolds and investigate the potential mirror construction in B-model side. Gain insights into geometric higher normal functions on mirror Landau-Ginzberg models of Fano threefolds and their role in reconstructing Apéry constants. Follow the speaker's exploration of results for various Fano threefolds, including V_10, V_12, V_16, V_18, and a partial result for V_14, based on Mukai's classification.

Syllabus

A Construction of Apéry Constants from Landau Ginzberg Models


Taught by

IMSA

Related Courses

Introduction to Mathematical Thinking
Stanford University via Coursera
Effective Thinking Through Mathematics
The University of Texas at Austin via edX
Cryptography
University of Maryland, College Park via Coursera
Математика для всех
Moscow Institute of Physics and Technology via Coursera
Number Theory and Cryptography
University of California, San Diego via Coursera