YoVDO

A Construction of Apéry Constants from Landau Ginzberg Models

Offered By: IMSA via YouTube

Tags

Number Theory Courses Algebraic Geometry Courses Riemann Zeta Function Courses K3 Surfaces Courses

Course Description

Overview

Explore a mathematical lecture delving into the construction of Apéry constants from Landau-Ginzberg models. Discover how the irrationality of the Riemann zeta function at 3 was proven by R. Apéry through rapidly converging sequences, and learn about its connection to the holomorphic period function of K3 surfaces. Examine V. Golyshev's work on special L-function values for Fano threefolds and investigate the potential mirror construction in B-model side. Gain insights into geometric higher normal functions on mirror Landau-Ginzberg models of Fano threefolds and their role in reconstructing Apéry constants. Follow the speaker's exploration of results for various Fano threefolds, including V_10, V_12, V_16, V_18, and a partial result for V_14, based on Mukai's classification.

Syllabus

A Construction of Apéry Constants from Landau Ginzberg Models


Taught by

IMSA

Related Courses

Contest Math II
Brilliant
Number Theory
Brilliant
Group Theory
Brilliant
Contest Math I
Brilliant
Math Fundamentals (2020)
Brilliant