A Computational Framework for Solving Wasserstein Lagrangian Flows
Offered By: Valence Labs via YouTube
Course Description
Overview
Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a comprehensive lecture on a computational framework for solving Wasserstein Lagrangian flows. Delve into the dynamical formulation of optimal transport, examining various choices of underlying geometry and density path regularization. Learn how these combinations yield different variational problems, encompassing variations of optimal transport such as the Schrödinger bridge and unbalanced optimal transport. Discover a novel deep learning-based framework that approaches these problems from a unified perspective, without requiring simulation or backpropagation through learned dynamics trajectories. Examine the framework's versatility through its application to single-cell trajectory inference, demonstrating the importance of incorporating prior knowledge into dynamics for accurate predictions. Follow along as the speaker covers Lagrangian mechanics, Wasserstein Lagrangian mechanics, optimal transport, Schrödinger bridge, the computational framework, applications, results, and concludes with a Q&A session.
Syllabus
- Intro + Motivation
- Lagrangian Mechanics
- Wasserstein Lagrangian Mechanics
- Optimal Transport
- Schrödinger Bridge
- Computational Framework
Applications + Results
- Q&A
Taught by
Valence Labs
Related Courses
Mécanique LagrangienneÉcole Polytechnique Fédérale de Lausanne via Coursera Classical Mechanics-I
Banaras Hindu University via Swayam Classical Motion of a Single Particle
Indian Institute of Technology Kanpur via Swayam Dynamics and Control of Mechanical Systems
Indian Institute of Science Bangalore via Swayam Dynamics of Classical and Quantum Fields
Indian Institute of Technology Guwahati via Swayam