A Code-Driven Introduction to Reinforcement Learning
Offered By: GOTO Conferences via YouTube
Course Description
Overview
Explore a code-driven introduction to Reinforcement Learning (RL) in this 33-minute conference talk from GOTO 2020. Delve into the fundamentals of RL, including the Markov decision process (MDP) framework, and learn how to build an RL algorithm to solve it. Follow along as the speaker demonstrates creating a "GridWorld" simulation from scratch, derives a simple RL algorithm to solve the simulation, and provides actionable steps for applying RL in industry. Gain hands-on experience with a provided Jupyter notebook and discover how RL, building upon machine learning, has the potential to automate strategic-level thinking in various fields. Perfect for beginners, this presentation covers key concepts, practical coding examples, and future applications of this cutting-edge AI paradigm.
Syllabus
Intro
Agenda
What is Reinforcement Learning RL?
Coding the MDP
Coding the RL solution
Next steps
Outro
Taught by
GOTO Conferences
Related Courses
Introduction to Data Science in PythonUniversity of Michigan via Coursera Julia Scientific Programming
University of Cape Town via Coursera Python for Data Science
University of California, San Diego via edX Probability and Statistics in Data Science using Python
University of California, San Diego via edX Introduction to Python: Fundamentals
Microsoft via edX