A Characterization of 3D Steady Euler Flows Using Commuting Zero-Flux Homologies
Offered By: Cambridge University Press via YouTube
Course Description
Overview
Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a concise video presentation by Francisco Torres De Lizaur from the University of Toronto, introducing the paper 'A characterization of 3D steady Euler flows using commuting zero-flux homologies'. Delve into the authors' characterization of volume-preserving vector fields on 3-manifolds that are steady solutions of the Euler equations for some Riemannian metric, using commuting zero-flux homologies. Discover how this work extends Sullivan's homological characterization of geodesible flows in the volume-preserving case. Learn about the application demonstrating that steady Euler flows cannot be constructed using plugs, as in Wilson's or Kuperberg's constructions. Gain insights into analogous results proven in higher dimensions. Additionally, examine the Helmholtz equation in unbounded wave guides with periodic coefficients, understanding the existence of solutions for non-singular frequencies using energy methods rather than traditional analyticity arguments within operator theory.
Syllabus
A characterization of 3D steady Euler flows using commuting zero-flux homologies
Taught by
Cambridge University Press
Related Courses
Nonlinear Dynamics 1: Geometry of ChaosGeorgia Institute of Technology via Independent Geometría diferencial y Mecánica: una introducción
Universidad de La Laguna via Miríadax Geometría diferencial y Mecánica: una introducción
Universidad de La Laguna via Miríadax Doutorado: Folheações Holomorfas - Aula 17
Instituto de Matemática Pura e Aplicada via YouTube Superfícies de Riemann - Aula 21
Instituto de Matemática Pura e Aplicada via YouTube