5 Steps to Build an AI Vision MVP
Offered By: Pysource via YouTube
Course Description
Overview
Learn the essential steps for creating a successful Computer Vision Minimum Viable Product (MVP) in this 17-minute video. Discover the difference between an MVP and a Proof of Concept, and explore key aspects such as problem definition, tool selection, data collection, user-friendly design, and feedback gathering. Gain valuable insights into the development process of AI vision projects and apply these principles to your own computer vision endeavors.
Syllabus
Intro
Difference between MVP and PC
Define the problem
Choose the right tools
Data collection
Simple to use
Collect feedback
Taught by
Pysource
Related Courses
Neural Networks for Machine LearningUniversity of Toronto via Coursera 機器學習技法 (Machine Learning Techniques)
National Taiwan University via Coursera Machine Learning Capstone: An Intelligent Application with Deep Learning
University of Washington via Coursera Прикладные задачи анализа данных
Moscow Institute of Physics and Technology via Coursera Leading Ambitious Teaching and Learning
Microsoft via edX