Semi-Supervised Learning with GANs in Keras
Offered By: DigitalSreeni via YouTube
Course Description
Overview
Learn how to implement semi-supervised learning using Generative Adversarial Networks (GANs) in Keras through this comprehensive tutorial video. Explore the concept of training models on partially labeled datasets, combining unsupervised and supervised learning approaches. Discover the advantages of using SGANs for achieving better accuracy with limited labeled data compared to traditional CNNs. Follow along as the instructor guides you through the implementation process, covering topics such as standard classification, GAN generator creation, unsupervised discriminator training, and supervised sample integration. Gain practical insights into coding SGANs and understand their potential applications in scenarios with large, partially labeled datasets.
Syllabus
Introduction
Standard classification implementation
GAN generator
Unsupervised discriminator
Supervised samples
Training
Coding
Taught by
DigitalSreeni
Related Courses
機械学習・深層学習 (ga120)Waseda University via gacco What are GAN's actually- from underlying math to python code
Udemy Artificial Intelligence Foundations: Machine Learning
LinkedIn Learning HyperTransformer - Model Generation for Supervised and Semi-Supervised Few-Shot Learning
Yannic Kilcher via YouTube Big Self-Supervised Models Are Strong Semi-Supervised Learners
Yannic Kilcher via YouTube