Multi-Instance Adversarial Attack on GNN-Based Malicious Domain Detection
Offered By: IEEE via YouTube
Course Description
Overview
Explore a 15-minute IEEE conference talk examining multi-instance adversarial attacks on Graph Neural Network (GNN) based malicious domain detection systems. Delve into the vulnerabilities of GNN models in cybersecurity applications and learn about innovative attack strategies that exploit these weaknesses. Gain insights into the challenges faced by current malicious domain detection methods and understand the potential implications for network security. Discover cutting-edge research findings and potential countermeasures to enhance the robustness of GNN-based detection systems against sophisticated adversarial threats.
Syllabus
211 Multi Instance Adversarial Attack on GNN Based Malicious Domain Detection Mahmoud Khaled Ahm
Taught by
IEEE Symposium on Security and Privacy
Tags
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent