모두를 위한 딥러닝 - PyTorch
Offered By: YouTube
Course Description
Overview
Syllabus
Docker Instruction.
[PyTorch] Lab-01-1 Tensor Manipulation 1.
[PyTorch] Lab-01-2 Tensor Manipulation 2.
[PyTorch] Lab-02 Linear regression.
[PyTorch] Lab-03 Deeper Look at GD.
[PyTorch] Lab-04-1 Multivariable Linear regression.
[PyTorch] Lab-04-2 Loading Data.
[PyTorch] Lab-05 Logistic Regression.
[PyTorch] Lab-06 Softmax Classification.
[PyTorch] Lab-07-1 Tips.
[PyTorch] Lab-07-2 MNIST Introduction.
[PyTorch] Lab-08-1 Perceptron.
[PyTorch] Lab-08-2 Multi Layer Perceptron.
[PyTorch] Lab-09-1 ReLU.
[PyTorch] Lab-09-2 Weight initialization.
[PyTorch] Lab-09-3 Dropout.
[PyTorch] Lab-09-4 Batch Normalization.
[PyTorch] Lab-10-0 Convolution Neural Networkintro.
[PyTorch] Lab-10-1 Convolution.
[PyTorch] Lab-10-2 mnist cnn.
[PyTorch] Lab-10-3 visdom.
[PyTorch] Lab-10-4-1 ImageFolder1.
[PyTorch] Lab-10-4-2 ImageFolder2.
[PyTorch] Lab-10-5 Advance CNN(VGG).
[PyTorch] Lab-10-6-1 Advanced CNN(RESNET)1.
[PyTorch] Lab-10-6-2 Advanced CNN(RESNET)2.
[PyTorch] Lab-10-7 Next step of CNN.
[PyTorch] Lab-11-0 RNN intro.
[PyTorch] Lab-11-1 RNN basics.
[PyTorch] Lab-11-2 RNN hihello and charseq.
[PyTorch] Lab-11-3 RNN Long sequence.
[PyTorch] Lab-11-4 RNN timeseries.
[PyTorch] Lab-11-5 RNN seq2seq.
[PyTorch] Lab-11-6 RNN PackedSequence.
Taught by
Deep Learning Zero To All
Related Courses
Neural Networks for Machine LearningUniversity of Toronto via Coursera 機器學習技法 (Machine Learning Techniques)
National Taiwan University via Coursera Machine Learning Capstone: An Intelligent Application with Deep Learning
University of Washington via Coursera Прикладные задачи анализа данных
Moscow Institute of Physics and Technology via Coursera Leading Ambitious Teaching and Learning
Microsoft via edX