YoVDO

Pretrained CNN Features for Semantic Segmentation Using Random Forest

Offered By: DigitalSreeni via YouTube

Tags

Convolutional Neural Networks (CNN) Courses Machine Learning Courses Feature Extraction Courses Random Forests Courses Semantic Segmentation Courses

Course Description

Overview

Learn how to leverage pretrained VGG16 imagenet weights for feature extraction and train a Random Forest model for semantic segmentation in this 22-minute tutorial. Explore the process of extracting features using VGG16 and utilizing them to create a robust segmentation model that can outperform U-net, especially with limited training data. Discover the steps involved, including importing necessary libraries, setting up the VGG16 model, creating a feature extractor, and organizing data into a dataframe. Access the code and dataset provided to follow along and implement the technique in your own projects. Gain insights into image annotation and learn how to run the code as a workflow online using APEER, a free platform for individuals, students, researchers, and non-profits.

Syllabus

Introduction
What is VGG16
What are labels
Import libraries
Import VGG16
VGG Model
Feature extractor
Dataframe
Saving the model


Taught by

DigitalSreeni

Related Courses

Convolutional Neural Networks
DeepLearning.AI via Coursera
Convolutional Neural Networks in TensorFlow
DeepLearning.AI via Coursera
TensorFlow for CNNs: Transfer Learning
Coursera Project Network via Coursera
Visualizing Filters of a CNN using TensorFlow
Coursera Project Network via Coursera
Fine-tuning Convolutional Networks to Classify Dog Breeds
Coursera Project Network via Coursera