Pretrained CNN Features for Semantic Segmentation Using Random Forest
Offered By: DigitalSreeni via YouTube
Course Description
Overview
Learn how to leverage pretrained VGG16 imagenet weights for feature extraction and train a Random Forest model for semantic segmentation in this 22-minute tutorial. Explore the process of extracting features using VGG16 and utilizing them to create a robust segmentation model that can outperform U-net, especially with limited training data. Discover the steps involved, including importing necessary libraries, setting up the VGG16 model, creating a feature extractor, and organizing data into a dataframe. Access the code and dataset provided to follow along and implement the technique in your own projects. Gain insights into image annotation and learn how to run the code as a workflow online using APEER, a free platform for individuals, students, researchers, and non-profits.
Syllabus
Introduction
What is VGG16
What are labels
Import libraries
Import VGG16
VGG Model
Feature extractor
Dataframe
Saving the model
Taught by
DigitalSreeni
Related Courses
Computer Vision: The FundamentalsUniversity of California, Berkeley via Coursera Einführung in Computer Vision
Technische Universität München (Technical University of Munich) via Coursera 機器學習技法 (Machine Learning Techniques)
National Taiwan University via Coursera Machine Learning for Musicians and Artists
Goldsmiths University of London via Kadenze Прикладные задачи анализа данных
Moscow Institute of Physics and Technology via Coursera