YoVDO

Введение в данные

Offered By: Novosibirsk State University via Coursera

Tags

Data Analysis Courses Data Visualization Courses Measures of Central Tendency Courses Probability Theory Courses

Course Description

Overview

Этот курс - первый в специализации "Анализ данных". Курс будет особенно полезен тем, кто имеет небольшой опыт работы с данными, или хочет освежить знания по теории вероятностей, математической статистике и типах данных.
Сначала мы вспомним основы теории вероятностей и поговорим о случайных величинах и их свойствах, об основных распределениях случайных величин.
Затем перейдем к основным характеристикам распределений: мерам центра и мерам вариативности. Далее обсудим основные типы шкал измерения признаков, а также основные ограничения, которые тип шкалы накладывает на применимые методы анализа данных.
Третья неделя курса посвящена графическому анализу данных и способам визуализации распределений, индивидуальных или совместных. Завершающий модуль курса посвящен выборкам и способам их формирования, а также принципам и инструментам работы с пропущенными и неопределенными значениями.
Вы сможете применить полученные знания, выполнив небольшой проект на реальных данных, предоставленных компанией 2GIS.
Присоединяйтесь!

Узнать об образовательных программах Новосибирского государственного университета: https://education.nsu.ru/bachelor/

Syllabus

  • ОСНОВЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ
    • В первом модуле курса мы вспомним основы теории вероятностей. Мы поговорим о вероятности и её свойствах, о случайных величинах и их характеристиках, а также об основных распределениях случайных величин и их ключевых свойствах. Этот модуль формирует основы для понимания принципов, на которых строится статистический анализ данных.
  • ОСНОВЫ СТАТИСТИЧЕСКОГО АНАЛИЗА ВЫБОРОЧНЫХ ДАННЫХ
    • В этом модуле мы поговорим об описательных статистиках и о двух типа характеристик распределений: меры центральной тенденции (или просто меры центра: что типично для исследуемого распределения) и меры вариативности (или меры разброса: насколько разнообразны значения признака, распределение которого исследуется). Для начала мы разберемся с типами данных, немного поговорим о выборках, и затем рассмотрим основные меры центра и разброса, применимые для данных разных типов. В завершении модуля мы посмотрим, как рассчитываются описательные статистики в SPSS и в R.
  • ГРАФИЧЕСКИЙ АНАЛИЗ ДАННЫХ
    • В этом модуле мы займемся графическим анализом данных. Сначала мы увидим, как по-разному могут выглядеть распределения, обладающие похожими характеристиками. Затем рассмотрим основные виды графиков, поймём области их применения и основные ограничения для каждого графического инструмента. В практической части курса мы научимся строить графики в SPSS и в R.
  • ФОРМИРОВАНИЕ ВЫБОРОК И ПОДГОТОВКА ДАННЫХ
    • В этом модуле мы поговорим о том, как строить выборки, а также научимся работать с пропущенными и неопределенными данными. Мы рассмотрим основные виды выборок, научимся рассчитывать необходимый объем выборки и ошибку выборки, а также разберём, как кодировать пропущенные и неопределённые данные и что делать с ними дальше. В практической части модуля мы научимся формировать массив данных в SPSS так, чтобы сэкономить время на этапе обработки и анализа данных.
  • Практические задания
    • В этом модуле вам предстоит применить полученные в курсе знания на практике. Сначала пройдите итоговый тест, чтобы проверить полученные в курсе знания и навыки. Также вам предлагается выполнить небольшой самостоятельный проект на реальных данных, предоставленных компанией 2GIS: проанализировать данные самостоятельно, а также оценить сокурсников.

Taught by

Ольга Ечевская, Наталья Галанова and Виктор Дёмин

Tags

Related Courses

Introduction to Statistics: Probability
University of California, Berkeley via edX
Aléatoire : une introduction aux probabilités - Partie 1
École Polytechnique via Coursera
Einführung in die Wahrscheinlichkeitstheorie
Johannes Gutenberg University Mainz via iversity
Combinatorics and Probability
Moscow Institute of Physics and Technology via Coursera
Probability
University of Pennsylvania via Coursera