YoVDO

PySpark for Data Science - Beginners

Offered By: Udemy

Tags

PySpark Courses Python Courses Apache Spark Courses

Course Description

Overview

Learn basics of Apache Spark and learn to analyze Big Data for Machine Learning using Python in PySpark

What you'll learn:
  • Learn bout the concept of RDDs and other very basic features and terminologies being used in the case of Spark
  • You will also understand what are the benefits and disadvantages of using Spark
  • Use Python with Big Data on Apache Spark
  • These PySpark Tutorials aims to explain the basics of Apache Spark and the essentials related to it

These PySpark Tutorials aim to explain the basics of Apache Spark and the essentials related to it. This also targets why the Apache spark is a better choice than Hadoop and is the best solution when it comes to real-time processing. You will also understand what are the benefits and disadvantages of using Spark with all the above-listed languages You will also read about the concept of RDDs and other very basic features and terminologies being used in the case of Spark. This course is for students, professionals, and aspiring data scientists who want to get hands-on training in PySpark (Python for Apache Spark) using real-world datasets and applicable coding knowledge that you’ll use every day as a data scientist.

Pyspark is a big data solution that is applicable for real-time streaming using Python programming language and provides a better and efficient way to do all kinds of calculations and computations. It is also probably the best solution in the market as it is interoperable i.e. Pyspark can easily be managed along with other technologies and other components of the entire pipeline. The earlier big data and Hadoop techniques included batch time processing techniques.

Pyspark is an open-source program where all the codebase is written in Python which is used to perform mainly all the data-intensive and machine learning operations. It has been widely used and has started to become popular in the industry and therefore Pyspark can be seen replacing other spark-based components such as the ones working with Java or Scala. One unique feature which comes along with Pyspark is the use of datasets and not data frames as the latter is not provided by Pyspark. Practitioners need more tools that are often more reliable and faster when it comes to streaming real-time data. The earlier tools such as Map-reduce made use of the map and the reduced concepts which included using the mappers, then shuffling or sorting, and then reducing them into a single entity. This MapReduce provided a way of parallel computation and calculation. The Pyspark makes use of in-memory techniques that don’t make use of the space storage being put into the hard disk. It provides a general purpose and a faster computation unit.


Taught by

Exam Turf

Related Courses

Design Computing: 3D Modeling in Rhinoceros with Python/Rhinoscript
University of Michigan via Coursera
A Practical Introduction to Test-Driven Development
LearnQuest via Coursera
FinTech for Finance and Business Leaders
ACCA via edX
Access Bioinformatics Databases with Biopython
Coursera Project Network via Coursera
Accounting Data Analytics
University of Illinois at Urbana-Champaign via Coursera