Data Manipulation and PCA (Principal Component Analysis )
Offered By: Udemy
Course Description
Overview
Data Manipulation and PCA
What you'll learn:
What you'll learn:
- By the end of this course , a student will be able to do the following:
- Stet a working directory , Import a txt or csv file, eliminate duplicate rows in the data, detect rows containing missing values, eliminate rows containing missing values, replace missing values by the mean, replace missing values by a specified information, use the apply function , do some arithmetic on columns , detect strongly correlated variable (some nice plots for visualization ), compute the correlation matrix , the eigenvalue and eigenvector vector, select the number of components the compute the components
In this course, we learn the following:
How toStet a working directory
How toImport a txt or csv file
How toeliminate duplicate rows in the data
How to detect rows containing missing values
How toeliminate rows containing missing values
How toreplace missing values
How to select a subset of the data basedon specifics criteria
How todo arithmetic on columns
Howdetect strongly correlated variable (some nice plots for visualization )
How tocompute the correlation matrix , the eigenvalue and eigenvector
How select the number of components
How tocompute the components
Taught by
Modeste Atsague
Related Courses
Estadística para investigadores: Todo lo que siempre quiso saberUniversidad de Salamanca via Miríadax Построение выводов по данным
Moscow Institute of Physics and Technology via Coursera Successfully Evaluating Predictive Modelling
University of Edinburgh via edX Математические и инструментальные методы машинного обучения
National Research Nuclear University MEPhI via edX Mining Data to Extract and Visualize Insights in Python
Coursera Project Network via Coursera