Transfer Learning for NLP with TensorFlow Hub
Offered By: Coursera Project Network via Coursera
Course Description
Overview
This is a hands-on project on transfer learning for natural language processing with TensorFlow and TF Hub. By the time you complete this project, you will be able to use pre-trained NLP text embedding models from TensorFlow Hub, perform transfer learning to fine-tune models on real-world data, build and evaluate multiple models for text classification with TensorFlow, and visualize model performance metrics with Tensorboard.
Prerequisites:
In order to successfully complete this project, you should be competent in the Python programming language, be familiar with deep learning for Natural Language Processing (NLP), and have trained models with TensorFlow or and its Keras API.
Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Syllabus
- Transfer Learning for NLP with TensorFlow Hub
- Welcome to this hands-on project on transfer learning for natural language processing with TensorFlow and TF Hub. By the time you complete this project, you will be able to use pre-trained NLP text embedding models from TensorFlow Hub, perform transfer learning to fine-tune models on real-world data, build and evaluate multiple models for text classification with TensorFlow, and visualize model performance metrics with Tensorboard.
Taught by
Snehan Kekre
Related Courses
Creative Applications of Deep Learning with TensorFlowKadenze Creative Applications of Deep Learning with TensorFlow III
Kadenze Creative Applications of Deep Learning with TensorFlow II
Kadenze 6.S191: Introduction to Deep Learning
Massachusetts Institute of Technology via Independent Learn TensorFlow and deep learning, without a Ph.D.
Google via Independent