YoVDO

Machine Learning for Telecom Customers Churn Prediction

Offered By: Coursera Project Network via Coursera

Tags

Machine Learning Courses Logistic Regression Courses Classification Algorithms Courses K-Nearest Neighbors Courses

Course Description

Overview

In this hands-on project, we will train several classification algorithms such as Logistic Regression, Support Vector Machine, K-Nearest Neighbors, and Random Forest Classifier to predict the churn rate of Telecommunication Customers. Machine learning help companies analyze customer churn rate based on several factors such as services subscribed by customers, tenure rate, and payment method. Predicting churn rate is crucial for these companies because the cost of retaining an existing customer is far less than acquiring a new one. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Syllabus

  • Telecom Customers Churn Prediction using several Machine Learning Classification problems
    • Welcome to “Machine Learning Classification: Telecom Customers Churn Prediction”. This is a project-based course which should take approximately 2 hours to finish. Before diving into the project, please take a look at the course objectives and structure.

Taught by

Ryan Ahmed

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent