Tapestry of Field theory: Classical & Quantum, Equilibrium & Nonequilibrium Perspectives
Offered By: Indian Institute of Technology Kanpur via Swayam
Course Description
Overview
Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
ABOUT THE COURSE: Quantum field theory and statistical field theory have been employed to explain many difficult natural phenomena successfully, and they are must-learn tools for particle, condensed matter, and statistical physicists. These tools have also been useful for modelling nonequilibrium systems, such as KPZ equation, time-dependent Ginzburg-Landau equation, and turbulence. In this course, we will cover various facets of field theory in a single canvas so as to compare and contrast important paradigms. This course will focus on breadth of field theory. I believe that such perspectives will enrich the perspectives of students.INTENDED AUDIENCE: Masters and PhD students, as well as advanced UG students of PhysicsPREREQUISITES: Quantum Mech, Mathematical Methods, Statistical Physics. Good background in mathematics required.
Syllabus
Week 1:
Module 1 : Green’s function
Module 2 : Lagrangian & Hamiltonian for fields
Module 3 : Functional integrals
Module 4 : Generic integrals
Week 2:
Module 1 : QFT1: Second quantization
Module 2 : Symmetries
Module 3 : Noether’s theorem
Week 3:
Module 1 : Complex scalar field
Module 2 : Propagators and perturbation theory
Module 3 : Feynman diagrams
Week 4:
Module 1 : Statistical field theory: Intro to statmech
Module 2 : Path integrals and partition function
Module 3 : Landau’s theory of phase transition
Week 5:Module 1 : Mean field theory
Module 2 : Wilson theory of phase transition; Fluctuations
Module 3 : Renormalization groups
Week 6:
Module 1 : Renormalization groups
Module 2 : Equilibrium vs. nonequilibrium
Module 3 : Energy transfers
Week 7:
Module 1 : QFT2: Intro to gauge theory
Module 2 : Intro to QED
Module 3 : Mass and charge renormalization
Week 8:
Module 1 : Higgs mechanism
Module 2 : Higgs mechanism
Module 3 : Asymptotic freedom
Week 9:
Module 1 : Classical field theory
Module 2 : Nonequilibrium behaviour
Module 3 : Dynamical critical phenomena
Week 10:
Module 1 : KPZ equation
Module 2 : Time-dependent Ginzburg-Landau eqn.
Module 3 : Field theory of hydrodynamic Turbulence
Week 11:
Module 1 : Field theory of hydrodynamic Turbulence
Module 2 : Field theory of Euler Turbulence
Module 3 : Scalar turbulence
Week 12:
Module 1 : Magnetohydrodynamic turbulence
Module 2 : Comparation between QFT, SFT and classical field theory
Module 3 : Summary
Module 1 : Green’s function
Module 2 : Lagrangian & Hamiltonian for fields
Module 3 : Functional integrals
Module 4 : Generic integrals
Week 2:
Module 1 : QFT1: Second quantization
Module 2 : Symmetries
Module 3 : Noether’s theorem
Week 3:
Module 1 : Complex scalar field
Module 2 : Propagators and perturbation theory
Module 3 : Feynman diagrams
Week 4:
Module 1 : Statistical field theory: Intro to statmech
Module 2 : Path integrals and partition function
Module 3 : Landau’s theory of phase transition
Week 5:Module 1 : Mean field theory
Module 2 : Wilson theory of phase transition; Fluctuations
Module 3 : Renormalization groups
Week 6:
Module 1 : Renormalization groups
Module 2 : Equilibrium vs. nonequilibrium
Module 3 : Energy transfers
Week 7:
Module 1 : QFT2: Intro to gauge theory
Module 2 : Intro to QED
Module 3 : Mass and charge renormalization
Week 8:
Module 1 : Higgs mechanism
Module 2 : Higgs mechanism
Module 3 : Asymptotic freedom
Week 9:
Module 1 : Classical field theory
Module 2 : Nonequilibrium behaviour
Module 3 : Dynamical critical phenomena
Week 10:
Module 1 : KPZ equation
Module 2 : Time-dependent Ginzburg-Landau eqn.
Module 3 : Field theory of hydrodynamic Turbulence
Week 11:
Module 1 : Field theory of hydrodynamic Turbulence
Module 2 : Field theory of Euler Turbulence
Module 3 : Scalar turbulence
Week 12:
Module 1 : Magnetohydrodynamic turbulence
Module 2 : Comparation between QFT, SFT and classical field theory
Module 3 : Summary
Taught by
Prof. Mahendra Verma
Tags
Related Courses
Relativistic Quantum Field Theory IMassachusetts Institute of Technology via MIT OpenCourseWare Introduction To Quantum Field Theory(Theory Of Scalar Fields)
IIT Hyderabad via Swayam Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2
IIT Hyderabad via Swayam Path Integral and functional methods in quantum field theory
Indian Institute of Technology Bombay via Swayam Path Integral Methods in Physics & Finance
Indian Institute of Technology Roorkee via Swayam