YoVDO

Metric Spaces and Complex Analysis

Offered By: CEC via Swayam

Tags

Mathematics Courses Complex Analysis Courses Homeomorphism Courses

Course Description

Overview

Learners having idea of fundamental Mathematics can easily understand the fundamentals of functions of a complex variable, metric spaces, and various theorems like Cantor’s theorem, Banach Fixed point Theorem, Cauchy-Riemann equations, Cauchy-Goursat theorem, Cauchy integral formula, Liouville’s theorem and the fundamental theorem of algebra.The main objectives areTo understand the concept of a metric space, to familiarize the ideas of open and closed sets, to learn the concept of continuity, homeomorphism and connectedness, to provide a foundation for more advanced courses in Mathematical analysis, to provide a new perspective on many of the ideas studied in Real Analysis, to study the techniques of complex variables and functions together with their derivatives, Contour integration and transformations and developing a clear understanding of the fundamental concepts of Complex Analysis

Syllabus

Weeks Weekly Lecture Topics (Module Titles)   1 Day 1 Module 1 : METRIC SPACES AND EXAMPLES Day 2Module 2 : SEQUENCES IN METRIC SPACES Day 3Module 3 : OPEN SETS Day 4 Day 5   2 Day 1 Module 4 : FUNDAMENTAL PROPERTIES OF OPEN SETS Day 2Module 5 : CLOSED SETS Day 3Module 6 :CANTOR SET AND CLOSURE OF A SET Day 4 Day 5   3 Day 1 Module 7 : BOUNDARY OF A SET AND DENSE SET Day 2Module 8 : THEOREMS ON OPEN AND CLOSED SETS Day 3Module 9 : SEPARABLE SPACES Day 4 Day 5   4 Day 1 Module 10 : CONTINUITY Day 2Module 11 : UNIFORM CONTINUITY Day 3Module 12 : BAIRE'S THEOREM Day 4 Day 5   5 Day 1 Module 13 : HOMEOMORPHISM Day 2Module 14 : CONNECTEDNESS Day 3Module 15 : PROPERTIES OF COMPLEX NUMBERS Day 4 Day 5   6 Day 1 Module 16 : POLAR AND EXPONETIAL FORM Day 2Module 17 : FUNCTIONS OF A COMPLEX VARIABLE Day 3Module 18 : LIMIT OF FUNCTIONS OF A COMPLEX VARIABLE Day 4 Day 5   7 Day 1 Module 19 : POINT AT INFINITY Day 2Module 20 : CONTINUITY OF FUNCTIONS OF A COMPLEX VARIABLE Day 3Module 21 : MAPPINGS Day 4 Day 5   8 Day 1 Module 22 : DIFFERENTIATION OF FUNCTIONS OF A COMPLEX VARIABLE Day 2Module 23: CAUCHY-RIEMANN EQUATIONS - I Day 3Module 24 : CAUCHY-RIEMANN EQUATIONS - II Day 4 Day 5

9 Day 1 Module 25 : ANALYTIC FUNCTIONS Day 2Module 26 : EXPONENTIAL FUNCTIONS Day 3Module 27: TRIGONOMETRIC FUNCTIONS Day 4 Day 5   10 Day 1 Module 28 : LOGARITHMIC FUNCTIONS Day 2Module 29 : HARMONIC FUNCTIONS Day 3Module 30 : DEFINITE INTEGRALS Day 4 Day 5   11 Day 1 Module 31 : CONTOURS Day 2Module 32 : CONTOUR INTEGRALS Day 3Module 33: CAUCHY-GOURSAT THEOREM Day 4 Day 5   12 Day 1 Module 34 : CAUCHY'S INTEGRAL FORMULA Day 2Module 35 : LIOVILLE'S THEOREM Day 3Module 36 : SEQUENCES AND SERIES - I Day 4 Day 5   13 Day 1 Module 37 :SEQUENCES AND SERIES - II Day 2Module 38 : TAYLOR SERIES Day 3Module 39 : LAURENT SERIES Day 4 . Day 5   14 Day 1 Module 40 : POWER SERIES Day 2 Day 3 Day 4  

Taught by

Dr. AJITHA V

Related Courses

Analytic Combinatorics
Princeton University via Coursera
Introduction to Complex Analysis
Wesleyan University via Coursera
Analysis of a Complex Kind
Wesleyan University via Coursera
Complex Analysis
National University of Science and Technology MISiS via edX
Complex Analysis with Physical Applications
National University of Science and Technology MISiS via edX