Metric Spaces and Complex Analysis
Offered By: CEC via Swayam
Course Description
Overview
Learners having idea of fundamental Mathematics can easily understand the fundamentals of functions of a complex variable, metric spaces, and various theorems like Cantor’s theorem, Banach Fixed point Theorem, Cauchy-Riemann equations, Cauchy-Goursat theorem, Cauchy integral formula, Liouville’s theorem and the fundamental theorem of algebra.The main objectives areTo understand the concept of a metric space, to familiarize the ideas of open and closed sets, to learn the concept of continuity, homeomorphism and connectedness, to provide a foundation for more advanced courses in Mathematical analysis, to provide a new perspective on many of the ideas studied in Real Analysis, to study the techniques of complex variables and functions together with their derivatives, Contour integration and transformations and developing a clear understanding of the fundamental concepts of Complex Analysis
Syllabus
Weeks Weekly Lecture Topics (Module Titles)
1 Day 1 Module 1 : METRIC SPACES AND EXAMPLES
Day 2Module 2 : SEQUENCES IN METRIC SPACES
Day 3Module 3 : OPEN SETS
Day 4
Day 5
2 Day 1 Module 4 : FUNDAMENTAL PROPERTIES OF OPEN SETS
Day 2Module 5 : CLOSED SETS
Day 3Module 6 :CANTOR SET AND CLOSURE OF A SET
Day 4
Day 5
3 Day 1 Module 7 : BOUNDARY OF A SET AND DENSE SET
Day 2Module 8 : THEOREMS ON OPEN AND CLOSED SETS
Day 3Module 9 : SEPARABLE SPACES
Day 4
Day 5
4 Day 1 Module 10 : CONTINUITY
Day 2Module 11 : UNIFORM CONTINUITY
Day 3Module 12 : BAIRE'S THEOREM
Day 4
Day 5
5 Day 1 Module 13 : HOMEOMORPHISM
Day 2Module 14 : CONNECTEDNESS
Day 3Module 15 : PROPERTIES OF COMPLEX NUMBERS
Day 4
Day 5
6 Day 1 Module 16 : POLAR AND EXPONETIAL FORM
Day 2Module 17 : FUNCTIONS OF A COMPLEX VARIABLE
Day 3Module 18 : LIMIT OF FUNCTIONS OF A COMPLEX VARIABLE
Day 4
Day 5
7 Day 1 Module 19 : POINT AT INFINITY
Day 2Module 20 : CONTINUITY OF FUNCTIONS OF A COMPLEX VARIABLE
Day 3Module 21 : MAPPINGS
Day 4
Day 5
8 Day 1 Module 22 : DIFFERENTIATION OF FUNCTIONS OF A COMPLEX VARIABLE
Day 2Module 23: CAUCHY-RIEMANN EQUATIONS - I
Day 3Module 24 : CAUCHY-RIEMANN EQUATIONS - II
Day 4
Day 5
9 Day 1 Module 25 : ANALYTIC FUNCTIONS Day 2Module 26 : EXPONENTIAL FUNCTIONS Day 3Module 27: TRIGONOMETRIC FUNCTIONS Day 4 Day 5 10 Day 1 Module 28 : LOGARITHMIC FUNCTIONS Day 2Module 29 : HARMONIC FUNCTIONS Day 3Module 30 : DEFINITE INTEGRALS Day 4 Day 5 11 Day 1 Module 31 : CONTOURS Day 2Module 32 : CONTOUR INTEGRALS Day 3Module 33: CAUCHY-GOURSAT THEOREM Day 4 Day 5 12 Day 1 Module 34 : CAUCHY'S INTEGRAL FORMULA Day 2Module 35 : LIOVILLE'S THEOREM Day 3Module 36 : SEQUENCES AND SERIES - I Day 4 Day 5 13 Day 1 Module 37 :SEQUENCES AND SERIES - II Day 2Module 38 : TAYLOR SERIES Day 3Module 39 : LAURENT SERIES Day 4 . Day 5 14 Day 1 Module 40 : POWER SERIES Day 2 Day 3 Day 4
9 Day 1 Module 25 : ANALYTIC FUNCTIONS Day 2Module 26 : EXPONENTIAL FUNCTIONS Day 3Module 27: TRIGONOMETRIC FUNCTIONS Day 4 Day 5 10 Day 1 Module 28 : LOGARITHMIC FUNCTIONS Day 2Module 29 : HARMONIC FUNCTIONS Day 3Module 30 : DEFINITE INTEGRALS Day 4 Day 5 11 Day 1 Module 31 : CONTOURS Day 2Module 32 : CONTOUR INTEGRALS Day 3Module 33: CAUCHY-GOURSAT THEOREM Day 4 Day 5 12 Day 1 Module 34 : CAUCHY'S INTEGRAL FORMULA Day 2Module 35 : LIOVILLE'S THEOREM Day 3Module 36 : SEQUENCES AND SERIES - I Day 4 Day 5 13 Day 1 Module 37 :SEQUENCES AND SERIES - II Day 2Module 38 : TAYLOR SERIES Day 3Module 39 : LAURENT SERIES Day 4 . Day 5 14 Day 1 Module 40 : POWER SERIES Day 2 Day 3 Day 4
Taught by
Dr. AJITHA V
Related Courses
Analytic CombinatoricsPrinceton University via Coursera Introduction to Complex Analysis
Wesleyan University via Coursera Analysis of a Complex Kind
Wesleyan University via Coursera Complex Analysis
National University of Science and Technology MISiS via edX Complex Analysis with Physical Applications
National University of Science and Technology MISiS via edX