YoVDO

Mechanics and Control of Robotic Manipulators

Offered By: IIT Palakkad via Swayam

Tags

Mechanical Engineering Courses Robotics Courses Kinematics Courses

Course Description

Overview

Upon completion of the course, the students should able to:• Learn algorithmic approaches, mathematical models, and computational and motion control methods applicable to robotic manipulator systems• Recognize and analyze the basic mechanical and electrical systems concerning robots• Analyze and design the basic robotic systems• Implement and investigate the performance of various control techniques to the robotic manipulatorsINTENDED AUDIENCE :Undergraduate/graduate students interested in robotics and manipulatorsINDUSTRY SUPPORT : Most of the robotic and service oriented industries will recognize and give a value to this course

Syllabus

Week 1:Introduction: Effector: locomotion, and manipulation. Serial and parallel manipulators. Descriptions, Transformations and homogeneous transformation matrix. Week 2:Manipulator (serial manipulator) kinematics: Kinematic parameters, different notations, Denavit-Hartenberg (DH) representation, arm matrix. Forward and inverse kinematics. Analytical and numerical solutions. Examples Week 3:Differential kinematics: Differential (velocity) kinematics, velocity propagation, forward differential kinematics and inverse differential kinematics. Week 4:Jacobian matrix and Manipulator statics: Mapping between configuration-space to operational-space. Jacobian matrix and Pseudo inverse concepts. Introduction to workspace singularities.Manipulator statics: Conservation of energy or power, the mapping between operation-space to configuration-space inputs. Examples Week 5:Manipulator dynamics: Motion dynamics: Forward and inverse dynamics. Lagrangian (Lagrange-Euler) and Newton-Euler formulations. Examples Week 6:Dynamic simulation: Dynamic modeling of robotic manipulators and computer-based numerical simulations Week 7:Trajectory generation: Path and Trajectory. Configuration (joint) space trajectory and operational (task) space trajectory generations. Week 8:Control of robotic manipulators: Joint space and task-space control schemes.

Computational exercises using Matlab/Simulink or similar tools will be part of weekly exercises.

Taught by

Prof. Santhakumar Mohan

Tags

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Artificial Intelligence for Robotics
Stanford University via Udacity
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Control of Mobile Robots
Georgia Institute of Technology via Coursera
Artificial Intelligence Planning
University of Edinburgh via Coursera