Mathematical Methods and Techniques in Signal Processing
Offered By: Indian Institute of Science Bangalore via Swayam
Course Description
Overview
- Review of basic signals, systems and signal space: Review of 1-D signals and systems, review of random signals, multi-dimensional signals, review of vector spaces, inner product spaces, orthogonal projections and related concepts.
- Sampling theorems (a peek into Shannon and compressive sampling), Basics of multi-rate signal processing: sampling, decimation and interpolation, sampling rate conversion (integer and rational sampling rates), oversampled processing (A/D and D/A conversion), and introduction to filter banks.
- Signal representation: Transform theory and methods (FT and variations, KLT), other transform methods including convergence issues.
- Wavelets: Characterization of wavelets, wavelet transform, multi-resolution analysis.
INTENDED AUDIENCE : Post graduates and senior UGs with a strong background in basic DSP.PRE-REQUISITES : UG in Digital Signal Processing, familiarity with probability and linear algebraINDUSTRY SUPPORT : Any company using DSP techniques in their work, such as, TI, Analog Devices, Broadcom and many more.Rajeev Motwani and Prabhakar Raghavan,Randomized Algorithms
Syllabus
COURSE LAYOUT
Week 1:Review of vector spaces, inner product spaces, orthogonal projections, state variable representationWeek 2: Review of probability and random processes
Week 3:Signal geometry and applications
Week 4:Sampling theorems multirate signal processing decimation and expansion (time and frequency domain effects)
Week 5:Sampling rate conversion and efficient architectures, design of high decimation and interpolation filters, Multistage designs.
Week 6:Introduction to 2 channel QMF filter bank, M-channel filter banks, overcoming aliasing, amplitude and phase distortions.
Week 7:Subband coding and Filter Designs: Applications to Signal Compression
Week 8:Introduction to multiresolution analysis and wavelets, wavelet properties
Week 9:Wavelet decomposition and reconstruction, applications to denoising
Week 10:Derivation of the KL Transform, properties and applications.
Week 11:Topics on matrix calculus and constrained optimization relevant to KL Transform derivations.
Week 12:Fourier expansion, properties, various notions of convergence and applications.
Taught by
Shayan Garani Srinivasa
Tags
Related Courses
Information TheoryThe Chinese University of Hong Kong via Coursera Fundamentals of Electrical Engineering
Rice University via Coursera Digital Signal Processing
École Polytechnique Fédérale de Lausanne via Coursera Circuits and Electronics 1: Basic Circuit Analysis
Massachusetts Institute of Technology via edX Solar: Solar Cells, Fuel Cells and Batteries
Stanford University via Stanford OpenEdx