Integrated Photonics Devices and Circuits
Offered By: Indian Institute of Technology Madras via Swayam
Course Description
Overview
Lightwave technology and photonics played an important role in the progress of long-haul fiber optic communication systems. Recent advances in CMOS compatible silicon photonics technology has made it feasible for on-chip high-speed optical interconnects, biomedical lab-on-chip sensors, microwave photonics system-on-chip, linear optical quantum computing (LOQC) and highest degree of secured quantum key distribution (QKD) photonics chips with large-scale integrated components. In this course, students will learn theory of integrated optical waveguides and working principles of various integrated photonics devices (passive and active). The design rules and technology for large-scale photonic integrated circuits will be also addressed in this course.INTENDED AUDIENCE : Engineering UG/PG Students and Research ScholarsPREREQUISITES : EM Fields/Engineering Electromagnetics, Fundamentals of Semiconductor DevicesINDUSTRIES SUPPORT : Semiconductor Industries
Syllabus
Week-1:Introduction to Photonic Integrated Circuits – Functional Building Blocks; Theory of Optical Waveguide – The Basic Building Block; Orthogonality Condition of Guided Modes.
Week-2:Introduction to Photonic Integrated Circuits – Functional Building Blocks; Theory of Optical Waveguide – The Basic Building Block; Orthogonality Condition of Guided Modes.
Week-3:Design Principle of Single-Mode and Multimode Waveguides: Channel and Ridge/Rib waveguides, Waveguide Bends; Slot and Photonic Crystal Waveguides. Week-4:Design Principle of Single-Mode and Multimode Waveguides: Channel and Ridge/Rib waveguides, Waveguide Bends; Slot and Photonic Crystal Waveguides.
Week-5:Coupled Mode Theory; Waveguide Distributed Bragg Reflector (DBR) and Sub-Wavelength Grating (SWG) waveguide; Adiabatic Mode-Size Converter (MSC), Fiber-to-Waveguide Vertical Grating Coupler (VGC),
Week-6:Coupled Mode Theory; Waveguide Distributed Bragg Reflector (DBR) and Sub-Wavelength Grating (SWG) waveguide; Adiabatic Mode-Size Converter (MSC), Fiber-to-Waveguide Vertical Grating Coupler (VGC),
Week-7:Directional Coupler (DC), Multi-Mode Interferometric Coupler (MMIC). Mach-Zehnder Interferometer (MZI) and Microring Resonator (MRR): Filters and Delay Lines.
Week-8:Directional Coupler (DC), Multi-Mode Interferometric Coupler (MMIC). Mach-Zehnder Interferometer (MZI) and Microring Resonator (MRR): Filters and Delay Lines.
Week-9:Practical Planar Lightwave Circuits and CMOS Compatible Silicon Photonics Technology Platforms; Thermo-Optic and Electro-Optic Switches; Reconfigurable Filters and Tunable Delay Lines, Concept of Field Programmable Photonic Gate Array (FPPGA).
Week-10:Practical Planar Lightwave Circuits and CMOS Compatible Silicon Photonics Technology Platforms; Thermo-Optic and Electro-Optic Switches; Reconfigurable Filters and Tunable Delay Lines, Concept of Field Programmable Photonic Gate Array (FPPGA).
Week-11:Integrated Optical High-Speed Modulators: Design and Working Principle
Week-12:Integrated Optical High-Speed Modulators: Design and Working Principle
Week-2:Introduction to Photonic Integrated Circuits – Functional Building Blocks; Theory of Optical Waveguide – The Basic Building Block; Orthogonality Condition of Guided Modes.
Week-3:Design Principle of Single-Mode and Multimode Waveguides: Channel and Ridge/Rib waveguides, Waveguide Bends; Slot and Photonic Crystal Waveguides. Week-4:Design Principle of Single-Mode and Multimode Waveguides: Channel and Ridge/Rib waveguides, Waveguide Bends; Slot and Photonic Crystal Waveguides.
Week-5:Coupled Mode Theory; Waveguide Distributed Bragg Reflector (DBR) and Sub-Wavelength Grating (SWG) waveguide; Adiabatic Mode-Size Converter (MSC), Fiber-to-Waveguide Vertical Grating Coupler (VGC),
Week-6:Coupled Mode Theory; Waveguide Distributed Bragg Reflector (DBR) and Sub-Wavelength Grating (SWG) waveguide; Adiabatic Mode-Size Converter (MSC), Fiber-to-Waveguide Vertical Grating Coupler (VGC),
Week-7:Directional Coupler (DC), Multi-Mode Interferometric Coupler (MMIC). Mach-Zehnder Interferometer (MZI) and Microring Resonator (MRR): Filters and Delay Lines.
Week-8:Directional Coupler (DC), Multi-Mode Interferometric Coupler (MMIC). Mach-Zehnder Interferometer (MZI) and Microring Resonator (MRR): Filters and Delay Lines.
Week-9:Practical Planar Lightwave Circuits and CMOS Compatible Silicon Photonics Technology Platforms; Thermo-Optic and Electro-Optic Switches; Reconfigurable Filters and Tunable Delay Lines, Concept of Field Programmable Photonic Gate Array (FPPGA).
Week-10:Practical Planar Lightwave Circuits and CMOS Compatible Silicon Photonics Technology Platforms; Thermo-Optic and Electro-Optic Switches; Reconfigurable Filters and Tunable Delay Lines, Concept of Field Programmable Photonic Gate Array (FPPGA).
Week-11:Integrated Optical High-Speed Modulators: Design and Working Principle
Week-12:Integrated Optical High-Speed Modulators: Design and Working Principle
Taught by
Prof. Bijoy Krishna Das
Tags
Related Courses
Introduction aux réseaux cellulairesInstitut Mines-Télécom via Independent À la découverte des télécommunications
Institut Mines-Télécom via France Université Numerique Redes de difracción en comunicaciones ópticas
Universitat Politècnica de València via edX Tecnologie Digitali per la Comunicazione
University of Naples Federico II via Federica Fundamentos TIC para profesionales de negocios: Desarrollo de Software
Universitat Politècnica de València via edX