YoVDO

Advanced Linear Continuous Control Systems: Applications with MATLAB Programming and Simulink

Offered By: Indian Institute of Technology Roorkee via Swayam

Tags

Control Systems Courses MATLAB Courses Simulink Courses

Course Description

Overview

Today, there is an utmost need to understand advanced control engineering on account of its multidisplinary applications in various areas of engineering. The main thrust in this course is on fundamentals of advanced linear continuous control system. In this course, various methodology of modelling in state space, state transition matrix and solution in state equation will be studied. Further, stability analysis issues in state space will be discussed. Finally, the concepts of controllability, observability, controller design, and observer design will also be discussed. The theory is supported by numerical examples, practical examples and Matlab programmingImportant For Certification/Credit Transfer:INTENDED AUDIENCE: All Engineering Student/FacultyPREREQUISITES: NIL

Syllabus

Week 1 :1 Introduction to State Space 2 State Space Representation 3 State Space Representation: Companion Form (Controllable Canonical Form) 4 State Space Representation :Extended Controllable Canonical Form 5 State Space Representation :Observable Canonical FormWeek 2 :1 State Space Representation: Diagonal Canonical Form (Part I) 2 State Space Representation: Diagonal Canonical Form (Part II) 3 State Space Representation: Jordan Canonical Form 4 State Space Representation: Numerical Examples on State Space Modelling (Part I) 5 State Space Representation: Numerical Examples on State Space Modelling (Part II)
Week 3 :1 Modelling of Mechanical Systems in State Space 2 Modelling of DC Servo Motor (Part I) 3 Modelling of DC Servo Motor (Part II) 4 Determination of Transfer Function from State Space Model (Part-I) 5 Determination of Transfer Function from State Space Model (Part-II)Week 4 :1 Stability Analysis in State Space:Concept of Eigenvalues and Eigenvectors (Part I) 2 Stability Analysis in State Space (Part II) 3 Stability Analysis in State Space:Lyapunov Stability Analysis (Sylvester’s Criterion) (Part III) 4 Stability Analysis in State Space:Lyapunov Stability Analysis (Stability Criterion) (Part IV) 5 Stability Analysis in State Space:Lyapunov Stability Analysis (Direct Method) (Part V)Week 5 : 1 Concept of Diagonalization 2 Solution of State Equation 3 Solution of State Equation (Forced system) 4 Steady State Error for State Space System 5 State Transition Matrix (Part-I)Week 6 : 1 State Transition Matrix (Part-II) 2 State Transition Matrix using Caley Hamilton Theorem (Part-III) 3 MATLAB Programming with State Space 4 Controllability in State Space (Part-I) 5 Controllability in State Space (Part-II)Week 7 : 1 Observability in State Space (Part-I) 2 Observability in State Space (Part-II) 3 Pole Placement by State Feedback (Part-I) 4 Pole Placement by State Feedback (Part-II) 5 Pole Placement by State Feedback (Part-III)Week 8 : 1 Tracking Problem in State Feedback Design (Part-I) 2 Tracking Problem in State Feedback Design (Part-II) 3 State Observer Design (Part-I) 4 State Observer Design (Part-II) 5 State Observer Design (Part-III)


Taught by

Prof. Yogesh Vijay Hote

Tags

Related Courses

Advanced Capstone Spacecraft Dynamics and Control Project
University of Colorado Boulder via Coursera
An Introduction to Electronic Engineering
UK Electronics Skills Foundation via FutureLearn
Organizational Design: Creating Competitive Advantage
Indian Institute of Management Bangalore via edX
Accounting for Business Decision Making: Strategy Assessment and Control
University of Illinois at Urbana-Champaign via Coursera
XRP 101: Introduction to the Experiential Robotics Platform
Canvas Network