Основы статистики. Часть 3
Offered By: Bioinformatics Institute via Stepik
Course Description
Overview
В данном курсе мы завершаем введение в наиболее распространенные методы анализа данных. Мы подробнее разберем методы регрессионного анализа, уделив особое внимание методам диагностики регрессионных моделей. Познакомимся с такими продвинутыми методами как смешанные регрессионные модели, узнаем что такое bootstrap и как его применять для проверки гипотез. Помимо теоретических заданий слушателей ожидают практические задачи, которые необходимо выполнять, используя язык программирования R. Данный курс будет полезен как для слушателей из академических, так и из прикладных областей.
Syllabus
Подробнее о линейной регрессии
1.1 Общая информация о курсе
1.2 Введение
1.3 Линейность взаимосвязи
1.4 Логарифмическая трансформация переменных
1.5 Проблема гетероскедастичности
1.6 Мультиколлинеарность. Часть 1
1.7 Мультиколлинеарность. Часть 2
1.8 Практические задания на R
Смешанные регрессионные модели
2.1 Введение
2.2 Нарушение допущения о независимости наблюдений
2.3 Смешанные регрессионные модели. Реализация в R
2.4 Статистическая значимость, обобщённые модели и случайные эффекты
2.5 Практические задания на R
Введение в bootstrap
3.1 Складной нож (jackknife)
3.2 Bootstrap
3.3 Практические задания на R
3.4 Заключение
Taught by
Anatoliy Karpov, Ivan Ivanci and Polina Drozdova
Tags
Related Courses
Statistics OnePrinceton University via Coursera Intro to Statistics
Stanford University via Udacity Structural Equation Model and its Applications | 结构方程模型及其应用 (普通话)
The Chinese University of Hong Kong via Coursera Statistics in Medicine
Stanford University via Stanford OpenEdx Análisis Estadístico Básico con SPSS
Universidad de Cantabria via Miríadax