Statistics: Unlocking the World of Data
Offered By: University of Edinburgh via edX
Course Description
Overview
Data is everywhere, from the media to the health sciences, and from financial forecasting to engineering design. It drives our decisions, and shapes our views and beliefs. But how can we make sense of it?
This course introduces some of the key ideas and concepts of statistics, the discipline that allows us to analyse and interpret the data that underpins modern society.
In this course, you will explore the key principles of statistics for yourself, using interactive applets, and you will learn to interpret and evaluate the data you encounter in everyday life.
No previous knowledge of statistics is required, although familiarity with secondary school mathematics is advisable.
Logo image: (C) The University of Edinburgh 2016 CC BY, derived from Waverley Bridge, by Manuel Farnlack on Flickr, 2010 CC BY
Syllabus
Week 1: Introducing Data
What is statistics? We begin the course with this question, and see how data lies at the heart of statistics. We look at common techniques for presenting and summarising data.
Week 2: Patterns in Data
We look further into the science of data analysis, focusing on finding and interpreting relationships between different data sets, and on using trends in data to make predictions.
Week 3: Collecting Data
We look at key methods of data collection, seeing how we generally use samples of a population to make predictions about the whole population. We learn about how to choose a representative sample, and how to set up a statistical experiment.
Week 4: Uncertainty in Data
Using samples to make predictions about a population brings uncertainty into our data. As the study of risk and uncertainty, probability is therefore key to understanding statistics. We introduce the ideas here for describing and quantifying uncertainty via probabilities.
Week 5: Distribution
We look again at probability and describe a range of common situations that lead to standard forms for describing the associated probability of different possible outcomes. The ability to describe such probabilities provides the basis for building up the knowledge and understanding needed to study deeper statistical methods.
Week 6: Estimation
We will build on the idea of estimating properties of a population using sample data. Further, as the answer that we provide is only an estimate of the (unknown) true value, we will also describe how we may construct an associated uncertainty interval for the parameter being estimated, using properties of the sampling distribution.
We introduce the testing method that is fundamental to all of science: the hypothesis test. We learn how to set up and perform a hypothesis test, and look at how such tests are used in scientific research.
Week 7: Statistical Testing
We introduce the concepts of the testing method that is fundamental to all of science: the hypothesis test. We learn how to set up and perform simple hypothesis tests.
Week 8: Further Statistical Testing
We build on the ideas of the hypothesis test and look at further tests that are commonly used in scientific research.
Taught by
Mairi Walker, Ruth King and Chris Sangwin
Tags
Related Courses
Preparing for the AP* Statistics ExamUniversity of Houston System via Coursera Machine Learning
Brilliant Physics of the Everyday
Brilliant 統計学Ⅱ:推測統計の方法 (ga047)
University of Tokyo via gacco Business Analysis 101
Procurro Solutions via iversity