YoVDO

Statistical Modeling for Data Science Applications

Offered By: University of Colorado Boulder via Coursera

Tags

Statistical Modeling Courses Statistics & Probability Courses R Programming Courses

Course Description

Overview

Statistical modeling lies at the heart of data science. Well crafted statistical models allow data scientists to draw conclusions about the world from the limited information present in their data. In this three credit sequence, learners will add some intermediate and advanced statistical modeling techniques to their data science toolkit. In particular, learners will become proficient in the theory and application of linear regression analysis; ANOVA and experimental design; and generalized linear and additive models. Emphasis will be placed on analyzing real data using the R programming language. This specialization can be taken for academic credit as part of CU Boulder’s Master of Science in Data Science (MS-DS) degree offered on the Coursera platform. The MS-DS is an interdisciplinary degree that brings together faculty from CU Boulder’s departments of Applied Mathematics, Computer Science, Information Science, and others. With performance-based admissions and no application process, the MS-DS is ideal for individuals with a broad range of undergraduate education and/or professional experience in computer science, information science, mathematics, and statistics. Learn more about the MS-DS program at https://www.coursera.org/degrees/master-of-science-data-science-boulder. Logo adapted from photo by Vincent Ledvina on Unsplash

Syllabus

Course 1: Modern Regression Analysis in R
- Offered by University of Colorado Boulder. This course will provide a set of foundational statistical modeling tools for data science. In ... Enroll for free.

Course 2: ANOVA and Experimental Design
- Offered by University of Colorado Boulder. This second course in statistical modeling will introduce students to the study of the analysis ... Enroll for free.

Course 3: Generalized Linear Models and Nonparametric Regression
- Offered by University of Colorado Boulder. In the final course of the statistical modeling for data science program, learners will study a ... Enroll for free.


Courses

  • 0 reviews

    1 day 15 hours 56 minutes

    View details
    This second course in statistical modeling will introduce students to the study of the analysis of variance (ANOVA), analysis of covariance (ANCOVA), and experimental design. ANOVA and ANCOVA, presented as a type of linear regression model, will provide the mathematical basis for designing experiments for data science applications. Emphasis will be placed on important design-related concepts, such as randomization, blocking, factorial design, and causality. Some attention will also be given to ethical issues raised in experimentation. This course can be taken for academic credit as part of CU Boulder’s Master of Science in Data Science (MS-DS) degree offered on the Coursera platform. The MS-DS is an interdisciplinary degree that brings together faculty from CU Boulder’s departments of Applied Mathematics, Computer Science, Information Science, and others. With performance-based admissions and no application process, the MS-DS is ideal for individuals with a broad range of undergraduate education and/or professional experience in computer science, information science, mathematics, and statistics. Learn more about the MS-DS program at https://www.coursera.org/degrees/master-of-science-data-science-boulder. Logo adapted from photo by Vincent Ledvina on Unsplash
  • 0 reviews

    1 day 18 hours 3 minutes

    View details
    In the final course of the statistical modeling for data science program, learners will study a broad set of more advanced statistical modeling tools. Such tools will include generalized linear models (GLMs), which will provide an introduction to classification (through logistic regression); nonparametric modeling, including kernel estimators, smoothing splines; and semi-parametric generalized additive models (GAMs). Emphasis will be placed on a firm conceptual understanding of these tools. Attention will also be given to ethical issues raised by using complicated statistical models. This course can be taken for academic credit as part of CU Boulder’s Master of Science in Data Science (MS-DS) degree offered on the Coursera platform. The MS-DS is an interdisciplinary degree that brings together faculty from CU Boulder’s departments of Applied Mathematics, Computer Science, Information Science, and others. With performance-based admissions and no application process, the MS-DS is ideal for individuals with a broad range of undergraduate education and/or professional experience in computer science, information science, mathematics, and statistics. Learn more about the MS-DS program at https://www.coursera.org/degrees/master-of-science-data-science-boulder. Logo adapted from photo by Vincent Ledvina on Unsplash
  • 0 reviews

    1 day 21 hours 26 minutes

    View details
    This course will provide a set of foundational statistical modeling tools for data science. In particular, students will be introduced to methods, theory, and applications of linear statistical models, covering the topics of parameter estimation, residual diagnostics, goodness of fit, and various strategies for variable selection and model comparison. Attention will also be given to the misuse of statistical models and ethical implications of such misuse. This course can be taken for academic credit as part of CU Boulder’s Master of Science in Data Science (MS-DS) degree offered on the Coursera platform. The MS-DS is an interdisciplinary degree that brings together faculty from CU Boulder’s departments of Applied Mathematics, Computer Science, Information Science, and others. With performance-based admissions and no application process, the MS-DS is ideal for individuals with a broad range of undergraduate education and/or professional experience in computer science, information science, mathematics, and statistics. Learn more about the MS-DS program at https://www.coursera.org/degrees/master-of-science-data-science-boulder. Logo adapted from photo by Vincent Ledvina on Unsplash

Taught by

Brian Zaharatos

Tags

Related Courses

Accounting for Death in War: Separating Fact from Fiction
Royal Holloway, University of London via FutureLearn
Advanced Machine Learning
The Open University via FutureLearn
Advanced Statistics for Data Science
Johns Hopkins University via Coursera
農企業管理學 (Agribusiness Management)
National Taiwan University via Coursera
AI & Machine Learning
Arizona State University via Coursera