SQL Window Functions for Analytics
Offered By: Coursera Project Network via Coursera
Course Description
Overview
Welcome to this project-based course SQL Window Functions for Analytics. This is a hands-on project that will help SQL users use window functions extensively for database insights. In this project, you will learn how to explore and query the project-db database extensively. We will start this hands-on project by retrieving the data in the table in the database.
By the end of this 2-hour-and-a-half-long project, you will be able to use different window functions to retrieve the desired result from a database. In this project, you will learn how to use SQL window functions like ROW_NUMBER(), RANK(), DENSE_RANK(), NTILE(), and LAST_VALUE() to manipulate data in the project-db database. Also, we will consider how to use aggregate window functions. These window functions will be used together with the OVER() clause to query this database. By extension, we will use grouping functions like GROUPING SETS(), ROLLUP(), and CUBE() to retrieve sublevel and grand totals.
Syllabus
- Project Overview
- Welcome to this project-based course SQL Window Functions for Analytics. This is a hands-on project that will help SQL users use window functions extensively for database insights. In this project, you will learn how to explore and query the project-db database extensively. We will start this hands-on project by retrieving the data in the table in the database. By the end of this 2-hour-and-a-half-long project, you will be able to use different window functions to retrieve the desired result from a database. In this project, you will learn how to use SQL window functions like ROW_NUMBER(), RANK(), DENSE_RANK(), NTILE(), and LAST_VALUE() to manipulate data in the project-db database. Also, we will consider how to use aggregate window functions. These window functions will be used together with the OVER() clause to query this database. By extension, we will use grouping functions like GROUPING SETS(), ROLLUP(), and CUBE() to retrieve sublevel and grand totals. In this project, we will move systematically by first introducing the functions using a simple example. Then, we will write slightly complex queries using the window functions in real-life applications. Also, for this hands-on project, we will use PostgreSQL as our preferred database management system (DBMS). Therefore, to complete this project, it is required that you have prior experience with using PostgreSQL. Similarly, this project is an advanced SQL concept; so, a good foundation in writing SQL queries is vital to complete this project. I recommend that you should complete the project titled: “Introduction to SQL Window Functions” before you take this current project. The introductory project to SQL Window Functions will provide every necessary foundation to complete this current project. However, if you are comfortable writing queries in PostgreSQL, please join me on this wonderful ride! Let’s get our hands dirty!
Taught by
Arimoro Olayinka Imisioluwa
Related Courses
Agrégation de Données avec des Requêtes SQLCoursera Project Network via Coursera Learn dplyr
Codecademy Learn SQL
Codecademy Data Manipulation and Management using MYSQL Workbench
Coursera Project Network via Coursera Functions for Manipulating Data in SQL Server
DataCamp