Building Machine Learning Pipelines in PySpark MLlib
Offered By: Coursera Project Network via Coursera
Course Description
Overview
By the end of this project, you will learn how to create machine learning pipelines using Python and Spark, free, open-source programs that you can download. You will learn how to load your dataset in Spark and learn how to perform basic cleaning techniques such as removing columns with high missing values and removing rows with missing values. You will then create a machine learning pipeline with a random forest regression model. You will use cross validation and parameter tuning to select the best model from the pipeline. Lastly, you will evaluate your model’s performance using various metrics.
A pipeline in Spark combines multiple execution steps in the order of their execution. So rather than executing the steps individually, one can put them in a pipeline to streamline the machine learning process. You can save this pipeline, share it with your colleagues, and load it back again effortlessly.
Note: You should have a Gmail account which you will use to sign into Google Colab.
Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
A pipeline in Spark combines multiple execution steps in the order of their execution. So rather than executing the steps individually, one can put them in a pipeline to streamline the machine learning process. You can save this pipeline, share it with your colleagues, and load it back again effortlessly.
Note: You should have a Gmail account which you will use to sign into Google Colab.
Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Syllabus
- Building Machine Learning Pipelines in PySpark MLlib
- By the end of this project, you will learn how to create machine learning pipelines using Python and Spark, free, open-source programs that you can download. You will learn how to load your dataset in Spark and learn how to perform basic cleaning techniques such as removing columns with high missing values and removing rows with missing values. You will then create a machine learning pipeline with a random forest regression model. You will use cross validation and parameter tuning to select the best model from the pipeline. Lastly, you will evaluate your model’s performance using various metrics.
A pipeline in Spark combines multiple execution steps in the order of their execution. So rather than executing the steps individually, one can put them in a pipeline to streamline the machine learning process. You can save this pipeline, share it with your colleagues, and load it back again.
Taught by
Dr. Nikunj Maheshwari
Related Courses
Design Computing: 3D Modeling in Rhinoceros with Python/RhinoscriptUniversity of Michigan via Coursera A Practical Introduction to Test-Driven Development
LearnQuest via Coursera FinTech for Finance and Business Leaders
ACCA via edX Access Bioinformatics Databases with Biopython
Coursera Project Network via Coursera Accounting Data Analytics
University of Illinois at Urbana-Champaign via Coursera