Computational Thinking for Modeling and Simulation
Offered By: Massachusetts Institute of Technology via edX
Course Description
Overview
Computational thinking is becoming widely recognized as a skill necessary for every educated person in a technologically advanced society.
We will focus on just a subset of computational thinking which concerns creating models of the physical world – something that engineers frequently need to do. Because of that choice, this course covers many topics normally viewed as within the domain of mathematics such as algebra and calculus, but the solution procedures are algorithmic rather than symbolic.
The major themes of the course are:
We will focus on just a subset of computational thinking which concerns creating models of the physical world – something that engineers frequently need to do. Because of that choice, this course covers many topics normally viewed as within the domain of mathematics such as algebra and calculus, but the solution procedures are algorithmic rather than symbolic.
The major themes of the course are:
- Representation -- How do you encode information about the world in a computer? How do your choices in representation affect the ease with which you can solve problems?
- Decomposition -- How do you break a large and diverse problem into many simpler parts?
- Discretization -- How do you break up space and time into a large number of relatively small pieces? What are the alternative ways of doing this? What are the consequences of discretization procedures for accuracy and speed?
- Verification -- How do you build confidence in the results of a model?
Syllabus
What is Computational Thinking? (representation, discretization, error, decomposition, verification)
Interpolation (building simple surrogates for more complex functions)
Integration (processes for numerical quadrature)
Randomness (generating and using pseudorandom variables in models)
Differentiation (numerical derivatives)
Solving equations (Gaussian elimination for linear systems, Newton-Raphson for non-linear systems)
Interpolation (building simple surrogates for more complex functions)
Integration (processes for numerical quadrature)
Randomness (generating and using pseudorandom variables in models)
Differentiation (numerical derivatives)
Solving equations (Gaussian elimination for linear systems, Newton-Raphson for non-linear systems)
Taught by
Daniel Frey and Ali Talebinejad
Tags
Related Courses
Amazon DynamoDB Deep DiveA Cloud Guru Resilient Energy Systems for Sustainable Communities
University of Alaska Fairbanks via edX AWS: Monitoring and Logging
Whizlabs via Coursera Build Larabook From Scratch
Laracasts Calculus: Single Variable
University of Pennsylvania via Coursera