YoVDO

Sentiment Analysis with Deep Learning using BERT

Offered By: Coursera Project Network via Coursera

Tags

BERT Courses Deep Learning Courses Sentiment Analysis Courses

Course Description

Overview

In this 2-hour long project, you will learn how to analyze a dataset for sentiment analysis. You will learn how to read in a PyTorch BERT model, and adjust the architecture for multi-class classification. You will learn how to adjust an optimizer and scheduler for ideal training and performance. In fine-tuning this model, you will learn how to design a train and evaluate loop to monitor model performance as it trains, including saving and loading models. Finally, you will build a Sentiment Analysis model that leverages BERT's large-scale language knowledge. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Syllabus

  • Sentiment Analysis with Deep Learning using BERT
    • In this 1.5-to-2-hour long project, you will learn how to analyze a dataset for sentiment analysis. You will learn how to read in a PyTorch BERT model, and adjust the architecture for multi-class classification. You will learn how to adjust an optimizer and scheduler for ideal training and performance. In finetuning this model, you will learn how to design a train and evaluate loop to monitor model performance as it trains, including saving and loading models. Finally, you will build a Sentiment Analysis model that leverages BERT's large-scale language knowledge.

Taught by

Ari Anastassiou

Related Courses

Natural Language Processing with Attention Models
DeepLearning.AI via Coursera
Fine Tune BERT for Text Classification with TensorFlow
Coursera Project Network via Coursera
Deploy a BERT question answering bot on Django
Coursera Project Network via Coursera
Generating discrete sequences: language and music
Ural Federal University via edX
Build, Train, and Deploy ML Pipelines using BERT
DeepLearning.AI via Coursera