YoVDO

Sentiment Analysis with Deep Learning using BERT

Offered By: Coursera Project Network via Coursera

Tags

BERT Courses Deep Learning Courses Sentiment Analysis Courses

Course Description

Overview

In this 2-hour long project, you will learn how to analyze a dataset for sentiment analysis. You will learn how to read in a PyTorch BERT model, and adjust the architecture for multi-class classification. You will learn how to adjust an optimizer and scheduler for ideal training and performance. In fine-tuning this model, you will learn how to design a train and evaluate loop to monitor model performance as it trains, including saving and loading models. Finally, you will build a Sentiment Analysis model that leverages BERT's large-scale language knowledge. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Syllabus

  • Sentiment Analysis with Deep Learning using BERT
    • In this 1.5-to-2-hour long project, you will learn how to analyze a dataset for sentiment analysis. You will learn how to read in a PyTorch BERT model, and adjust the architecture for multi-class classification. You will learn how to adjust an optimizer and scheduler for ideal training and performance. In finetuning this model, you will learn how to design a train and evaluate loop to monitor model performance as it trains, including saving and loading models. Finally, you will build a Sentiment Analysis model that leverages BERT's large-scale language knowledge.

Taught by

Ari Anastassiou

Related Courses

Text Mining and Analytics
University of Illinois at Urbana-Champaign via Coursera
Introduction to Natural Language Processing
University of Michigan via Coursera
Enabling Technologies for Data Science and Analytics: The Internet of Things
Columbia University via edX
Machine Learning Capstone: An Intelligent Application with Deep Learning
University of Washington via Coursera
moocTLH: Nuevos retos en las tecnologías del lenguaje humano
Universidad de Alicante via Miríadax