Sentiment Analysis with Deep Learning using BERT
Offered By: Coursera Project Network via Coursera
Course Description
Overview
In this 2-hour long project, you will learn how to analyze a dataset for sentiment analysis. You will learn how to read in a PyTorch BERT model, and adjust the architecture for multi-class classification. You will learn how to adjust an optimizer and scheduler for ideal training and performance. In fine-tuning this model, you will learn how to design a train and evaluate loop to monitor model performance as it trains, including saving and loading models. Finally, you will build a Sentiment Analysis model that leverages BERT's large-scale language knowledge.
Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Syllabus
- Sentiment Analysis with Deep Learning using BERT
- In this 1.5-to-2-hour long project, you will learn how to analyze a dataset for sentiment analysis. You will learn how to read in a PyTorch BERT model, and adjust the architecture for multi-class classification. You will learn how to adjust an optimizer and scheduler for ideal training and performance. In finetuning this model, you will learn how to design a train and evaluate loop to monitor model performance as it trains, including saving and loading models. Finally, you will build a Sentiment Analysis model that leverages BERT's large-scale language knowledge.
Taught by
Ari Anastassiou
Related Courses
Building a unique NLP project: 1984 book vs 1984 albumCoursera Project Network via Coursera Amazon Echo Reviews Sentiment Analysis Using NLP
Coursera Project Network via Coursera Advanced Machine Learning
Higher School of Economics via Coursera Analiza tu mercado con Python
Coursera Project Network via Coursera Analyzing Squid Game Script with Google Cloud NLP
Coursera Project Network via Coursera