Semiconductor Physics
Offered By: University of Colorado Boulder via Coursera
Course Description
Overview
This course can also be taken for academic credit as ECEA 5630, part of CU Boulder’s Master of Science in Electrical Engineering degree.
This course introduces basic concepts of quantum theory of solids and presents the theory describing the carrier behaviors in semiconductors. The course balances fundamental physics with application to semiconductors and other electronic devices.
At the end of this course learners will be able to:
1. Understand the energy band structures and their significance in electric properties of solids
2. Analyze the carrier statistics in semiconductors
3. Analyze the carrier dynamics and the resulting conduction properties of semiconductors
Syllabus
- Quantum Theory Of Semiconductors
- In this module we will introduce the course and the Semiconductor Devices specialization. In addition, we will review the following topics: Type of solids, Bravais lattices, Lattice with basis, Point defects, Dislocation, Bulk crystal growth, Epitaxy, Energy levels of atoms and molecules, Energy bands of solids, Energy bands in real space, Energy bands in reciprocal lattice, Energy band structures of metal and insulator, Definition of semiconductor, Electrons and holes, and Effective mass.
- Carrier Statistics
- In this module, we will cover carrier statistics. Topics include: Currents in semiconductors, Density of states, Fermi-Dirac probability function, Equilibrium carrier concentrations, Non-degenerate semiconductors, Intrinsic carrier concentration, Intrinsic Fermi level, Donor and acceptor impurities, Impurity energy levels, Carrier concentration in extrinsic semiconductor, and Fermi level of extrinsic semiconductors.
- Currents in Semiconductor
- This module introduces you to currents in semiconductors. Topics we will cover include: Thermal motion of carriers, Carrier motion under electric field, Drift current, Mobility and conductivity, Velocity saturation, Diffusion of carriers, General expression for currents in semiconductor, Carrier concentration and mobility, and the Van der Pauw technique.
- Carrier Dynamics
- In this module we explore carrier dynamics. Topics include: Electronic transitions in semiconductor, Radiative transition, Direct and indirect bandgap semiconductors, Roosbroeck-Shockley relationship, Radiative transition rate at non-equilibrium, Minority carrier lifetime, Localized states, Recombination center and trap, Shockley-Hall-Reed recombination, Surface recombination, Auger recombination, Derivation of continuity equation, Non-equilibrium carrier concentration, Quasi-Fermi level, Current and quasi-Fermi level, Non-uniform doping, and Non-uniform bandgap.
Taught by
Wounjhang Park
Tags
Related Courses
Active Optical DevicesUniversity of Colorado Boulder via Coursera Advanced Converter Control Techniques
University of Colorado Boulder via Coursera Advanced Study of Protection Schemes and Switchgear
L&T EduTech via Coursera Algorithms for Battery Management Systems
University of Colorado System via Coursera An Introduction to Electronic Engineering
UK Electronics Skills Foundation via FutureLearn