Self Service ML Pipelines Using Dataprep and AutoML Tables
Offered By: Google via Google Cloud Skills Boost
Course Description
Overview
In this lab you will learn how to use Dataprep in conjunction with AutoML Tables to build and operate your machine learning pipelines.
Syllabus
- GSP912
- Overview
- Setup and requirements
- Task 1. Open Google Cloud Dataprep
- Task 2. Add target schema
- Task 3. Add parameterized input datasets
- Task 4. Define target schema
- Task 5. Target mapping in the recipe
- Task 6. Data quality rules
- Task 7. Output
- Task 8. Plans
- Task 9. Inference
- Task 10. Retrieve your Bearer token
- Task 11. Run job
- Congratulations!
Tags
Related Courses
Deployment of Machine Learning ModelsUdemy Introduction to PySpark
DataCamp Extreme Gradient Boosting with XGBoost
DataCamp Data Processing in Shell
DataCamp A Complete Guide on TensorFlow 2.0 using Keras API
Udemy