YoVDO

A Scientific Approach to Innovation Management

Offered By: Università Bocconi via Coursera

Tags

Innovation Courses Strategic Management Courses Data Analysis Courses Regression Analysis Courses Probability Courses Hypothesis Testing Courses Innovation Management Courses Causality Courses

Course Description

Overview

How can innovators understand if their idea is worth developing and pursuing? In this course, we lay out a systematic process to make strategic decisions about innovative product or services that will help entrepreneurs, managers and innovators to avoid common pitfalls. We teach students to assess the feasibility of an innovative idea through problem-framing techniques and rigorous data analysis labelled ‘a scientific approach’. The course is highly interactive and includes exercises and real-world applications. We will also show the implications of a scientific approach to innovation management through a wide range of examples and case studies. This video is part of a project that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 101021061)

Syllabus

  • THE INNOVATION DECISION
    • We provide a general discussion of innovation as problem-solving and we link the discuss the building blocks of the scientific approach to innovation decisions – from how to formulate the problem, to how to formulate the hypotheses and the theory, and how to test them. The whole discussion will be framed and applied to concrete managerial problems, including a discussion of the specific managerial tools that facilitate the application of a scientific approach to innovation management.
  • THEORY AND DATA FOR INNOVATION MANAGEMENT
    • We provide more details about the scientific approach and we introduce probabilities to understand how and why certain decisions lead to some outcomes instead of others and how to make better decisions. We also focus on how to formulate and test hypotheses in practice, and how to interpret these tests. We finally discuss how to design and run experiments. NB: some videos may contain a downloadable database; please, download it and follow the in-video instructions
  • DATA ANALYSIS
    • We cover the basics of data analysis, beginning with the distinction between correlation and causality in the analysis of data. We also teach how to make predictions using regression analysis and link these methods to the scientific approach, showing what role these analyses play, how they help to make scientific decisions and why. We complement this with real examples of companies using data to make innovation decisions. We close by discussing how to interpret these analyses and results critically to make sure we understand what we really learn from the analyses and when, how and why we should interpret our results cautiously and critically.
  • ADVANCED TOOLS FOR INNOVATION MANAGEMENT DECISIONS
    • This is s a more advanced part in which we discuss causality and provide the students with some broad exposure to big data and machine learning, and we discuss what they can do for managerial decisions.We provide a general wrap-up and conclusion of the course, including a discussion of when the scientific approach is most appropriate or has limitations. This helps to see when to apply it, or when to apply other approaches, including our own gut feelings. NB: some videos may contain a downloadable database; please, download it and follow the in-video instructions
  • FINAL PROJECT

Taught by

Alfonso Gambardella, Arnaldo Camuffo and Chiara Spina

Tags

Related Courses

80043368 - Strategies to Improve Human Papillomavirus (HPV) Vaccination Rates Among College Students
Johns Hopkins University via Independent
MBA Core Curriculum
University System of Maryland via edX
A Beginner’s Guide to Data Analytics
Boxplay via FutureLearn
A Beginner’s Guide to Data Handling and Management in Excel
Packt via FutureLearn
A Day in the Life of a Data Engineer (Korean)
Amazon Web Services via AWS Skill Builder