YoVDO

Science of Training Young Athletes Part 2

Offered By: University of Florida via Coursera

Tags

Science Courses Injury Prevention Courses Muscular System Courses

Course Description

Overview

In this course you will learn how to design the type of training that takes advantage of the plastic nature of the athlete’s body so you mold the right phenotype for a sport. We explore ways the muscular system can be designed to generate higher force and power and the type of training needed to mold the athlete's physical capacity so it meets the energy and biochemical demands of the sport. We also examine the cost of plasticity when it is carried beyond the ability of the body to adjust itself to meet the imposed training stresses. The cost of overextending plasticity comes in the form injuries and chronic fatigue. In essence, a coach can push the athlete’s body too far and it can fail. Upon completion of this course you will be able to assemble a scientifically sound annual training plan.

Syllabus

  • Training Science
    • In the first topic you are introduced to the fundamentals of training science. This knowledge underlies your ability to design the type of training that will most effectively improve an athlete’s performance. Essential concepts such as homeostasis, core training principles, magnitude and timing of the training stimulus, and periodization theory are all discussed.
  • Sport specific strength and power
    • Training an athlete’s strength and power so it improves their sport performance is a challenging aspect of coaching. Here is the important knowledge you must have: First, you must understand the important terminology such as strength, torque, work and power. Second, you must be able to apply the principle of specificity and transfer of training effects to the athlete’s strength and power development. Third, you must know what peripheral structural adaptations and central adaptations you are trying to accomplish.
  • Acute fatigue during training and competition
    • Fatigue is a phenomenon we all experience. It is characterized by tiredness and the desire to rest. Whether the athlete likes it or not, fatigue serves a protective function. It is both cognitive and physical in nature. In this topic you are introduced to the science of acute fatigue due to training and competition. With rest, acute fatigue dissipates and the body becomes stronger. You will learn about important fatigue theories, and the factors believed to contribute to fatigue such as low fuel supplies, acidity and body temperature.
  • Chronic Fatigue Due to Overtraining
    • When an athlete is underperforming, and you don’t know why, suspect chronic fatigue due to overtraining as the prime contributing factor. Unfortunately, because we don’t fully understand chronic fatigue our knowledge about overtraining remains scant. Hans Selye’s General Adaptation framework suggests it is likely due to too much training and insufficient recovery that leads to a prolonged maladaptation of physiological systems and structures. In this module you are provided insight into chronic fatigue and its relationship to overtraining.
  • Preparing the athlete for competition
    • The final topic examines how to organize an athlete’s training so it ensures peak performance. We begin by discussing how to manage the various training effects resulting from a training session. Then we explore methods you can use to quantify training loads and how to taper those loads before a major competition. Finally, you will learn about thinking behind assembling an annual training plan

Taught by

Dr. Chris Brooks

Tags

Related Courses

Ergonomics in Action
The Hong Kong University of Science and Technology via edX
The Body Matters: Why Exercise Makes You Healthy and How to Stay Uninjured
McGill University via edX
Ergonomics 101
LinkedIn Learning
Deporte, crecimiento personal y salud: Artes Marciales
Universidad de Malaga via Miríadax
เทคนิคการเล่นเทนนิสเบื้องต้น | Introduction to Tennis
Chiang Mai University via ThaiMOOC