YoVDO

Diabetic Retinopathy Detection with Artificial Intelligence

Offered By: Coursera Project Network via Coursera

Tags

Artificial Intelligence Courses Health Care Courses Deep Learning Courses

Course Description

Overview

In this project, we will train deep neural network model based on Convolutional Neural Networks (CNNs) and Residual Blocks to detect the type of Diabetic Retinopathy from images. Diabetic Retinopathy is the leading cause of blindness in the working-age population of the developed world and estimated to affect over 347 million people worldwide. Diabetic Retinopathy is disease that results from complication of type 1 & 2 diabetes and can develop if blood sugar levels are left uncontrolled for a prolonged period of time. With the power of Artificial Intelligence and Deep Learning, doctors will be able to detect blindness before it occurs.

Syllabus

  • Retinopathy Detection Using Deep Learning
    • In this project, we will train a deep neural network model based on Convolutional Neural Networks (CNNs) and Residual Blocks to detect the type of Diabetic Retinopathy from images. Diabetic Retinopathy is a disease that results from complication of type 1 and 2 diabetes. The disease can develop if blood sugar levels are left uncontrolled for a prolonged period of time. It is caused by the damage of blood vessels in the retina which is located in the back of patient’s eyes. Diabetic Retinopathy is the leading cause of blindness in the working-age population of the developed world and is estimated to affect over 347 million people worldwide.

Taught by

Ryan Ahmed

Related Courses

Neural Networks for Machine Learning
University of Toronto via Coursera
機器學習技法 (Machine Learning Techniques)
National Taiwan University via Coursera
Machine Learning Capstone: An Intelligent Application with Deep Learning
University of Washington via Coursera
Прикладные задачи анализа данных
Moscow Institute of Physics and Technology via Coursera
Leading Ambitious Teaching and Learning
Microsoft via edX