YoVDO

Diabetic Retinopathy Detection with Artificial Intelligence

Offered By: Coursera Project Network via Coursera

Tags

Artificial Intelligence Courses Health Care Courses Deep Learning Courses

Course Description

Overview

In this project, we will train deep neural network model based on Convolutional Neural Networks (CNNs) and Residual Blocks to detect the type of Diabetic Retinopathy from images. Diabetic Retinopathy is the leading cause of blindness in the working-age population of the developed world and estimated to affect over 347 million people worldwide. Diabetic Retinopathy is disease that results from complication of type 1 & 2 diabetes and can develop if blood sugar levels are left uncontrolled for a prolonged period of time. With the power of Artificial Intelligence and Deep Learning, doctors will be able to detect blindness before it occurs.

Syllabus

  • Retinopathy Detection Using Deep Learning
    • In this project, we will train a deep neural network model based on Convolutional Neural Networks (CNNs) and Residual Blocks to detect the type of Diabetic Retinopathy from images. Diabetic Retinopathy is a disease that results from complication of type 1 and 2 diabetes. The disease can develop if blood sugar levels are left uncontrolled for a prolonged period of time. It is caused by the damage of blood vessels in the retina which is located in the back of patient’s eyes. Diabetic Retinopathy is the leading cause of blindness in the working-age population of the developed world and is estimated to affect over 347 million people worldwide.

Taught by

Ryan Ahmed

Related Courses

Prehospital care of acute stroke and patient selection for endovascular treatment using the RACE scale
University of Barcelona via Coursera
Addressing Violence Through Patient Care
University of Bergen via FutureLearn
AI for Medical Diagnosis
DeepLearning.AI via Coursera
AI for Medical Prognosis
DeepLearning.AI via Coursera
AI For Medical Treatment
DeepLearning.AI via Coursera