Reinforcement Learning in Finance
Offered By: New York University (NYU) via Coursera
Course Description
Overview
This course aims at introducing the fundamental concepts of Reinforcement Learning (RL), and develop use cases for applications of RL for option valuation, trading, and asset management.
By the end of this course, students will be able to
- Use reinforcement learning to solve classical problems of Finance such as portfolio optimization, optimal trading, and option pricing and risk management.
- Practice on valuable examples such as famous Q-learning using financial problems.
- Apply their knowledge acquired in the course to a simple model for market dynamics that is obtained using reinforcement learning as the course project.
Prerequisites are the courses "Guided Tour of Machine Learning in Finance" and "Fundamentals of Machine Learning in Finance". Students are expected to know the lognormal process and how it can be simulated. Knowledge of option pricing is not assumed but desirable.
Syllabus
- MDP and Reinforcement Learning
- MDP model for option pricing: Dynamic Programming Approach
- MDP model for option pricing - Reinforcement Learning approach
- RL and INVERSE RL for Portfolio Stock Trading
Taught by
Igor Halperin
Tags
Related Courses
4.0 Shades of Digitalisation for the Chemical and Process IndustriesUniversity of Padova via FutureLearn A Day in the Life of a Data Engineer
Amazon Web Services via AWS Skill Builder FinTech for Finance and Business Leaders
ACCA via edX Accounting Data Analytics
University of Illinois at Urbana-Champaign via Coursera Accounting Data Analytics
Coursera