Regresión logística con NumPy y Python
Offered By: Coursera Project Network via Coursera
Course Description
Overview
Bienvenidos a este curso basado en un proyecto de regresión logística con Numpy y Python. En este proyecto, aprenderás uno de los conceptos bases del machine learning sin usar ninguna de las bibliotecas o librerías populares de machine learning como scikit-learn y statsmodels. El objetivo de este proyecto es que implementes por ti mismo toda la carpintería, incluyendo descenso de gradiente, función de costo, y regresión logística, que se utilizan en diversos algoritmos de aprendizaje, para que tengas una comprensión más profunda de los fundamentos. Para cuando complete este proyecto, podrá construir un modelo de regresión logística utilizando Python y Numpy, realizar análisis de datos exploratorios básicos, e implementar el descenso de gradientes desde cero.
Este curso se ejecuta en la plataforma de proyectos prácticos de Coursera llamada Rhyme. En Rhyme, se realizan proyectos de forma práctica en el navegador. Tendrás acceso instantáneo a escritorios en la nube pre-configurados que contienen todo el software y los datos que necesitas para el proyecto. Todo ya está configurado directamente en tu navegador de Internet para que puedas concentrarte en el aprendizaje. Para este proyecto, obtendrás acceso instantáneo a un escritorio en la nube con Python, Jupyter, Numpy y Seaborn preinstalados.
Syllabus
- Introducción a Pandas para Data Science
- Bienvenidos a este curso basado en un proyecto de regresión logística con NumPy y Python. En este proyecto, aprenderás uno de los conceptos bases del machine learning sin usar ninguna de las bibliotecas o librerías populares de machine learning como scikit-learn y statsmodels. El objetivo de este proyecto es que implementes por ti mismo toda la carpintería, incluyendo descenso de gradiente, función de costo, y regresión logística, que se utilizan en diversos algoritmos de aprendizaje, para que tengas una comprensión más profunda de los fundamentos.
Taught by
Juan Pablo Yepes
Related Courses
Introduction à la statistique avec RUniversité Paris SUD via France Université Numerique Data Science Capstone
Johns Hopkins University via Coursera Statistical Inference and Modeling for High-throughput Experiments
Harvard University via edX Statistical Thinking for Data Science and Analytics
Columbia University via edX Data Analysis and Interpretation Capstone
Wesleyan University via Coursera