Случайные графы
Offered By: Moscow Institute of Physics and Technology via Coursera
Course Description
Overview
Издавна среди жителей Кёнигсберга была распространена такая загадка: как пройти по всем мостам через реку Преголя, не проходя ни по одному из них дважды. Многие кёнигсбержцы пытались решить эту задачу как теоретически, так и практически во время прогулок. Доказать или опровергнуть возможность существования такого маршрута никто не мог до 1736 года, когда выдающийся математик Леонард Эйлер не написал письмо своему другу с решением. Ответ был «нельзя». Так и родилась теория графов. Но что будет, если процесс, который описывает граф – случаен?
Теория случайных графов находится на стыке теории графов и теории вероятностей. Наука появилась в середине ХХ века, и она сразу же привлекла огромное внимание как со стороны чистых математиков, так и со стороны прикладников. В курсе мы изучим как основы теории случайных графов, так и настоящие ее жемчужины.
Мы научимся воспринимать многие сложные системы как "случайные графы". Среди них – интернет, социальные сети (Фейсбука, Вконтакте), биологические, межбанковские сети.
Прослушав этот курс, вы проникнетесь чрезвычайно красивой математической теорией и научитесь решать комбинаторные и алгоритмические задачи на случайных графах. Все эти знания позволят нам затем перейти к курсу веб-графов, в котором мы расскажем о самых современных приложениях вероятностно-графовых моделей и конструкций.
Для освоения материала будет достаточно математики школьного уровня, базовых знаний комбинаторики и теории вероятностей.
Теория случайных графов находится на стыке теории графов и теории вероятностей. Наука появилась в середине ХХ века, и она сразу же привлекла огромное внимание как со стороны чистых математиков, так и со стороны прикладников. В курсе мы изучим как основы теории случайных графов, так и настоящие ее жемчужины.
Мы научимся воспринимать многие сложные системы как "случайные графы". Среди них – интернет, социальные сети (Фейсбука, Вконтакте), биологические, межбанковские сети.
Прослушав этот курс, вы проникнетесь чрезвычайно красивой математической теорией и научитесь решать комбинаторные и алгоритмические задачи на случайных графах. Все эти знания позволят нам затем перейти к курсу веб-графов, в котором мы расскажем о самых современных приложениях вероятностно-графовых моделей и конструкций.
Для освоения материала будет достаточно математики школьного уровня, базовых знаний комбинаторики и теории вероятностей.
Syllabus
- Две модели случайного графа
- Случайный граф Эрдеша-Реньи: биномиальная модель и равномерная модель. Свойства случайного графа. Свойство связности. Пороговая вероятность для свойства связности. Пороговая вероятность для свойства связности. Возникновение гигантской компоненты в случайном графе.
- Теорема о пороговой вероятности для свойства связности
- Неравенство Маркова и Чебышева. Доказательство теоремы о пороговой вероятности для свойства связности случайного графа.
- Вероятностный метод
- Хроматическое число, число независимости и кликовое число. Обхват графа. Теорема о существовании графа с большим обхватом и большим хроматическим числом.
- Хроматическое число случайного графа
- Оценки хроматического числа случайного графа G(n,p) при различных p=p(n).
- Алгоритмы на случайном графе
- Жадный алгоритм раскраски. Жадное хроматическое число, жадное число независимости и жадное кликовое число. Теорема о жадном хроматическом числе и жадном числе независимости случайного графа.
- Малые подграфы в случайном графе
- Распределение малых подрафов в случайном графе: пороговые вероятности и Пуассоновская предельная теорема на пороге.
- Итоговый тест
- Заключительный экзамен, содержащий задачи по всем пройденным темам
Taught by
Андрей Райгородский
Tags
Related Courses
Aplicaciones de la teoría de grafos a la vida realMiríadax Aplicaciones de la Teoría de Grafos a la vida real
Universitat Politècnica de València via UPV [X] Introduction to Computational Thinking and Data Science
Massachusetts Institute of Technology via edX Genome Sequencing (Bioinformatics II)
University of California, San Diego via Coursera Algorithmic Information Dynamics: From Networks to Cells
Santa Fe Institute via Complexity Explorer