Quantum Mechanics for Scientists and Engineers 1
Offered By: Stanford University via edX
Course Description
Overview
This 9 week course aims to teach quantum mechanics to anyone with a reasonable college-level understanding of physical science or engineering. Quantum mechanics was once mostly of interest to physicists, chemists and other basic scientists. Now the concepts and techniques of quantum mechanics are essential in many areas of engineering and science such as materials science, nanotechnology, electronic devices, and photonics.
This course is a substantial introduction to quantum mechanics and how to use it. It is specifically designed to be accessible not only to physicists but also to students and technical professionals over a wide range of science and engineering backgrounds.
Syllabus
Introduction to quantum mechanics
How quantum mechanics is important in the everyday world, the bizarre aspects and continuing evolution of quantum mechanics, and how we need it for engineering much of modern technology.
Schroedinger’s wave equation
Getting to Schroedinger’s wave equation. Key ideas in using quantum mechanical waves — probability densities, linearity. The "two slit" experiment and its paradoxes.
Getting "quantum" behavior
The "particle in a box", eigenvalues and eigenfunctions. Mathematics of quantum mechanical waves.
Quantum mechanics of systems that change in time
Time variation by superposition of wave functions. The harmonic oscillator. Movement in quantum mechanics — wave packets, group velocity and particle current.
Measurement in quantum mechanics
Operators in quantum mechanics — the quantum-mechanical Hamiltonian. Measurement and its paradoxes — the Stern-Gerlach experiment.
Writing down quantum mechanics simply
A simple general way of looking at the mathematics of quantum mechanics — functions, operators, matrices and Dirac notation. Operators and measurable quantities. The uncertainty principle.
The hydrogen atom
Angular momentum in quantum mechanics — atomic orbitals. Quantum mechanics with more than one particle. Solving for the the hydrogen atom. Nature of the states of atoms.
How to solve real problems
Approximation methods in quantum mechanics.
Taught by
David Miller
Tags
Related Courses
Quantum Mechanics and Quantum ComputationedX Introduction to Astronomy
Duke University via Coursera Exploring Quantum Physics
University of Maryland, College Park via Coursera La visione del mondo della Relatività e della Meccanica Quantistica
Sapienza University of Rome via Coursera Classical Mechanics
Massachusetts Institute of Technology via edX