Predictive Modeling, Model Fitting, and Regression Analysis
Offered By: University of California, Irvine via Coursera
Course Description
Overview
Welcome to Predictive Modeling, Model Fitting, and Regression Analysis. In this course, we will explore different approaches in predictive modeling, and discuss how a model can be either supervised or unsupervised. We will review how a model can be fitted, trained and scored to apply to both historical and future data in an effort to address business objectives. Finally, this course includes a hands-on activity to develop a linear regression model.
Syllabus
- Predictive Modeling
- Welcome to Module 1, Predictive Modeling. In this module we will begin with a comparison of predictive and descriptive analytics, and discuss what can be learned from both. We will also discuss supervised and unsupervised modeling, two foundational models in analytics and machine learning.
- Data Dimensionality and Classification Analysis
- Welcome to Module 2, Data Dimensionality and Classification Analysis. In this module we will explore how data can be classified and how decision trees can be leveraged as a fast, easy to use a model that is easy to interpret, explain, and visualize.
- Model Fitting
- Welcome to Module 3, Model Fitting. In this module we will explore the concept of model fitting and how creating a generalized model that is able to fit both historical and future data is the ultimate goal. We will also review how a model can be trained or scored to apply to new and unlabeled data.
- Regression Analysis
- Welcome to Module 4, Regression Analysis. In this module we will begin with an explanation of regression analytics, a popular technique used by data science professionals to make predictions. We will also discuss how achieving model fit is not a guarantee that a model can help solve a business problem, and how even a good model can sometimes lead to unactionable outcomes.
Taught by
Julie Pai
Tags
Related Courses
Big Data Analytics in HealthcareGeorgia Institute of Technology via Udacity Model Building and Validation
AT&T via Udacity Maths for Humans: Linear, Quadratic & Inverse Relations
University of New South Wales via FutureLearn Regression Modeling in Practice
Wesleyan University via Coursera Data Science at Scale - Capstone Project
University of Washington via Coursera