YoVDO

Power Electronics

Offered By: University of Colorado Boulder via Coursera

Tags

Electrical Engineering Courses Power Electronics Courses DC-DC Converters Courses

Course Description

Overview

Courses 1, 2, and 3 in this specialization can also be taken for academic credit as part of CU Boulder’s Master of Science in Electrical Engineering degree. Enroll here. Courses 5 and 6 will be offered in the degree program soon. Design modern switched-mode power converters; create high-performance control loops around power converters; understand efficiency, power density and cost trade-offs By 2030, 80% of all electrical energy will be processed by power electronics. Professional advantages continue to grow for technical engineers who understand the fundamental principles and technical requirements of modern power conversion systems. This specialization covers design-oriented analysis, modeling and simulation techniques leading to practical engineering of high-performance power electronics systems.

Syllabus

Course 1: Introduction to Power Electronics
- This course can also be taken for academic credit as ECEA 5700, part of CU Boulder’s Master of Science in Electrical Engineering degree. This course introduces the basic concepts of switched-mode converter circuits for controlling and converting electrical power with high efficiency. Principles of converter circuit analysis are introduced, and are developed for finding the steady state voltages, current, and efficiency of power converters. Assignments include simulation of a dc-dc converter, analysis of an inverting dc-dc converter, and modeling and efficiency analysis of an electric vehicle system and of a USB power regulator. After completing this course, you will: ● Understand what a switched-mode converter is and its basic operating principles ● Be able to solve for the steady-state voltages and currents of step-down, step-up, inverting, and other power converters ● Know how to derive an averaged equivalent circuit model and solve for the converter efficiency A basic understanding of electrical circuit analysis is an assumed prerequisite for this course.

Course 2: Converter Circuits
- This course can also be taken for academic credit as ECEA 5701, part of CU Boulder’s Master of Science in Electrical Engineering degree. This course introduces more advanced concepts of switched-mode converter circuits. Realization of the power semiconductors in inverters or in converters having bidirectional power flow is explained. Power diodes, power MOSFETs, and IGBTs are explained, along with the origins of their switching times. Equivalent circuit models are refined to include the effects of switching loss. The discontinuous conduction mode is described and analyzed. A number of well-known converter circuit topologies are explored, including those with transformer isolation. The homework assignments include a boost converter and an H-bridge inverter used in a grid-interfaced solar inverter system, as well as transformer-isolated forward and flyback converters. After completing this course, you will: ● Understand how to implement the power semiconductor devices in a switching converter ● Understand the origins of the discontinuous conduction mode and be able to solve converters operating in DCM ● Understand the basic dc-dc converter and dc-ac inverter circuits ● Understand how to implement transformer isolation in a dc-dc converter, including the popular forward and flyback converter topologies Completion of the first course Introduction to Power Electronics is the assumed prerequisite for this course.

Course 3: Converter Control
- This course can also be taken for academic credit as ECEA 5702, part of CU Boulder’s Master of Science in Electrical Engineering degree. This course teaches how to design a feedback system to control a switching converter. The equivalent circuit models derived in the previous courses are extended to model small-signal ac variations. These models are then solved, to find the important transfer functions of the converter and its regulator system. Finally, the feedback loop is modeled, analyzed, and designed to meet requirements such as output regulation, bandwidth and transient response, and rejection of disturbances. Upon completion of this course, you will be able to design and analyze the feedback systems of switching regulators. This course assumes prior completion of courses Introduction to Power Electronics and Converter Circuits.

Course 4: Advanced Converter Control Techniques
- This course covers advanced converter control techniques, including averaged-switch modeling and Spice simulations, modeling and design of peak current mode and average current mode controlled converters, as well as an introduction to control of single-phase ac grid tied rectifiers and inverters. Design and simulation examples include wide bandwidth point-of-load voltage regulators, low-harmonic power-factor-correction rectifiers, and grid-tied inverters for solar photovoltaic power systems. Upon completion of the course, you will be able to model, design control loops, and simulate state-of-the-art pulse-width modulated (PWM) dc-dc converters, dc-ac inverters, ac-dc rectifiers, and other power electronics systems. This course assumes prior completion of Introduction to Power Electronics, Converter Circuits, and Converter Control

Course 5: Magnetics for Power Electronic Converters
- This course covers the analysis and design of magnetic components, including inductors and transformers, used in power electronic converters. The course starts with an introduction to physical principles behind inductors and transformers, including the concepts of inductance, core material saturation, airgap and energy storage in inductors, reluctance and magnetic circuit modeling, transformer equivalent circuits, magnetizing and leakage inductance. Multi-winding transformer models are also developed, including inductance matrix representation, for series and parallel structures. Modeling of losses in magnetic components covers core and winding losses, including skin and proximity effects. Finally, a complete procedure is developed for design optimization of inductors in switched-mode power converters. After completing this course, you will: ● Understand the fundamentals of magnetic components, including inductors and transformers ● Be able to analyze and model losses in magnetic components, and understand design trade-offs ● Know how to design and optimize inductors for switched-mode power converters This course assumes ONLY prior completion of Introduction to Power Electronics and Converter Circuits.

Course 6: Capstone Design Project in Power Electronics
- Learners will design a DC-DC converter that powers USB-C devices (20 V at 3 A) from a dc input voltage source such as a lithium-ion battery pack or a desktop computer power bus. Aspects of the project will include: ● Design of converter power stage and magnetics. Requires mastery of courses 1, 2, and 5. ● Simulation to verify correct steady-state operation. Requires mastery of courses 1, 2 and 4. ● Design of converter control system. Requires mastery of courses 3 and 4. ● Simulation to verify correct control system operation. Requires mastery of courses 3 and 4. ● Preparation of milestone reports documenting the design and its performance The reports will be peer graded.


Courses

  • 4 reviews

    11 hours 39 minutes

    View details
    This course can also be taken for academic credit as ECEA 5700, part of CU Boulder’s Master of Science in Electrical Engineering degree. This course introduces the basic concepts of switched-mode converter circuits for controlling and converting electrical power with high efficiency. Principles of converter circuit analysis are introduced, and are developed for finding the steady state voltages, current, and efficiency of power converters. Assignments include simulation of a dc-dc converter, analysis of an inverting dc-dc converter, and modeling and efficiency analysis of an electric vehicle system and of a USB power regulator. After completing this course, you will: ● Understand what a switched-mode converter is and its basic operating principles ● Be able to solve for the steady-state voltages and currents of step-down, step-up, inverting, and other power converters ● Know how to derive an averaged equivalent circuit model and solve for the converter efficiency A basic understanding of electrical circuit analysis is an assumed prerequisite for this course.
  • 0 reviews

    18 hours 45 minutes

    View details
    This course can also be taken for academic credit as ECEA 5701, part of CU Boulder’s Master of Science in Electrical Engineering degree. This course introduces more advanced concepts of switched-mode converter circuits. Realization of the power semiconductors in inverters or in converters having bidirectional power flow is explained. Power diodes, power MOSFETs, and IGBTs are explained, along with the origins of their switching times. Equivalent circuit models are refined to include the effects of switching loss. The discontinuous conduction mode is described and analyzed. A number of well-known converter circuit topologies are explored, including those with transformer isolation. The homework assignments include a boost converter and an H-bridge inverter used in a grid-interfaced solar inverter system, as well as transformer-isolated forward and flyback converters. After completing this course, you will: ● Understand how to implement the power semiconductor devices in a switching converter ● Understand the origins of the discontinuous conduction mode and be able to solve converters operating in DCM ● Understand the basic dc-dc converter and dc-ac inverter circuits ● Understand how to implement transformer isolation in a dc-dc converter, including the popular forward and flyback converter topologies Completion of the first course Introduction to Power Electronics is the assumed prerequisite for this course.
  • 0 reviews

    17 hours 3 minutes

    View details
    This course can also be taken for academic credit as ECEA 5703, part of CU Boulder’s Master of Science in Electrical Engineering degree. This course covers the analysis and design of magnetic components, including inductors and transformers, used in power electronic converters. The course starts with an introduction to physical principles behind inductors and transformers, including the concepts of inductance, core material saturation, airgap and energy storage in inductors, reluctance and magnetic circuit modeling, transformer equivalent circuits, magnetizing and leakage inductance. Multi-winding transformer models are also developed, including inductance matrix representation, for series and parallel structures. Modeling of losses in magnetic components covers core and winding losses, including skin and proximity effects. Finally, a complete procedure is developed for design optimization of inductors in switched-mode power converters.   After completing this course, you will: - Understand the fundamentals of magnetic components, including inductors and transformers - Be able to analyze and model losses in magnetic components, and understand design trade-offs  - Know how to design and optimize inductors and transformers for switched-mode power converters This course assumes prior completion of courses 1 and 2: Introduction to Power Electronics, and Converter Circuits.
  • 1 review

    19 hours 9 minutes

    View details
    This course can also be taken for academic credit as ECEA 5702, part of CU Boulder’s Master of Science in Electrical Engineering degree. This course teaches how to design a feedback system to control a switching converter. The equivalent circuit models derived in the previous courses are extended to model small-signal ac variations. These models are then solved, to find the important transfer functions of the converter and its regulator system. Finally, the feedback loop is modeled, analyzed, and designed to meet requirements such as output regulation, bandwidth and transient response, and rejection of disturbances. Upon completion of this course, you will be able to design and analyze the feedback systems of switching regulators. This course assumes prior completion of courses Introduction to Power Electronics and Converter Circuits.
  • 0 reviews

    4 weeks

    View details
    This course covers advanced converter control techniques, including averaged-switch modeling and Spice simulations, modeling and design of peak current mode and average current mode controlled converters, as well as an introduction to control of single-phase ac grid tied rectifiers and inverters. Design and simulation examples include wide bandwidth point-of-load voltage regulators, low-harmonic power-factor-correction rectifiers, and grid-tied inverters for solar photovoltaic power systems. Upon completion of the course, you will be able to model, design control loops, and simulate state-of-the-art pulse-width modulated (PWM) dc-dc converters, dc-ac inverters, ac-dc rectifiers, and other power electronics systems.

    This course assumes prior completion of Introduction to Power Electronics, Converter Circuits, and Converter Control
  • 0 reviews

    6 weeks, 6-10 hours a week, 6-10 hours a week

    View details
    Learners will design a DC-DC converter that powers USB-C devices (20 V at 3 A) from a dc input voltage source such as a lithium-ion battery pack or a desktop computer power bus. Aspects of the project will include:

    ● Design of converter power stage and magnetics. Requires mastery of courses 1, 2, and 5.
    ● Simulation to verify correct steady-state operation. Requires mastery of courses 1, 2 and 4.
    ● Design of converter control system. Requires mastery of courses 3 and 4.
    ● Simulation to verify correct control system operation. Requires mastery of courses 3 and 4.
    ● Preparation of milestone reports documenting the design and its performance

    The reports will be peer graded.

Taught by

Dr. Dragan Maksimovic, Dr. Khurram Afridi and Dr. Robert Erickson

Tags

Related Courses

Advanced Converter Control Techniques
University of Colorado Boulder via Coursera
Power Electronics
Massachusetts Institute of Technology via MIT OpenCourseWare
Power Electronics Graduate Certificate
University of Colorado Boulder via Coursera
Introduction to Power Electronics
University of Colorado Boulder via Coursera
Ultimate Solar Energy Course For Electrical Engineering
Skillshare