Scalable Machine Learning with the Microsoft Machine Learning Server
Offered By: Pluralsight
Course Description
Overview
In this course, you will learn how to create big data machine learning experiments using the Microsoft Machine Learning Server. Detailed code examples in both R and Python demonstrate how to scale your code and work with Apache Spark and SQL Server.
Working with big data often exceeds the capacity of in-memory dataframes. In this course, Scalable Machine Learning with the Machine Learning Server, you will learn how to build scalable, end-to-end machine learning experiments using both R and Python using the Microsoft Machine Learning Server. First, you will learn how to import, process, transform, and visualize big data. Next, we will cover how to write custom, scalable, distributed functions which can be executed in a number of compute contexts. In addition, you will learn how to use the state of the art machine learning algorithms included in the MicrosoftML package. Then, we will integrate machine learning experiments into SQL Server. Finally, we will cover how to using the machine learning server with Hadoop and Spark, including integration with popular frameworks such as PySpark, SparkR and Sparklyr. We will spin up an HDInsight cluster in Microsoft Azure, and also build a Spark development environment from scracth. When you’re finished with this course, you will have the skills and knowledge needed to build scalable machine learning experiments using R and Python using XDF files, the Hadoop Distributed File System, SQL Server and Apache Spark.
Working with big data often exceeds the capacity of in-memory dataframes. In this course, Scalable Machine Learning with the Machine Learning Server, you will learn how to build scalable, end-to-end machine learning experiments using both R and Python using the Microsoft Machine Learning Server. First, you will learn how to import, process, transform, and visualize big data. Next, we will cover how to write custom, scalable, distributed functions which can be executed in a number of compute contexts. In addition, you will learn how to use the state of the art machine learning algorithms included in the MicrosoftML package. Then, we will integrate machine learning experiments into SQL Server. Finally, we will cover how to using the machine learning server with Hadoop and Spark, including integration with popular frameworks such as PySpark, SparkR and Sparklyr. We will spin up an HDInsight cluster in Microsoft Azure, and also build a Spark development environment from scracth. When you’re finished with this course, you will have the skills and knowledge needed to build scalable machine learning experiments using R and Python using XDF files, the Hadoop Distributed File System, SQL Server and Apache Spark.
Syllabus
- Course Overview 1min
- Getting Started with the Microsoft Machine Learning Server 17mins
- Scaling Data Processing and Visualization 36mins
- Distributing Machine Learning across Processors and Partitions 38mins
- Building Machine Learning Pipelines with SQL Server 18mins
- Building Machine Learning Pipelines with Hadoop and Spark 24mins
- Summary 4mins
Taught by
Shawn Hainsworth
Related Courses
Cloud Computing Concepts, Part 1University of Illinois at Urbana-Champaign via Coursera Cloud Computing Concepts: Part 2
University of Illinois at Urbana-Champaign via Coursera Reliable Distributed Algorithms - Part 1
KTH Royal Institute of Technology via edX Introduction to Apache Spark and AWS
University of London International Programmes via Coursera Réalisez des calculs distribués sur des données massives
CentraleSupélec via OpenClassrooms