Preparing Data for Modeling with scikit-learn
Offered By: Pluralsight
Course Description
Overview
This course covers important steps in the pre-processing of data, including standardization, normalization, novelty and outlier detection, pre-processing image and text data, as well as explicit kernel approximations such as the RBF and Nystroem methods.
Even as the number of machine learning frameworks and libraries increases on a daily basis, scikit-learn is retaining its popularity with ease. Scikit-learn makes the common use-cases in machine learning - clustering, classification, dimensionality reduction and regression - incredibly easy. In this course, Preparing Data for Modeling with scikit-learn, you will gain the ability to appropriately pre-process data, identify outliers and apply kernel approximations. First, you will learn how pre-processing techniques such as standardization and scaling help improve the efficacy of ML algorithms. Next, you will discover how novelty and outlier detection is implemented in scikit-learn. Then, you will understand the typical set of steps needed to work with both text and image data in scikit-learn. Finally, you will round out your knowledge by applying implicit and explicit kernel transformations to transform data into higher dimensions. When you’re finished with this course, you will have the skills and knowledge to identify the correct data pre-processing technique for your use-case and detect outliers using theoretically robust techniques.
Even as the number of machine learning frameworks and libraries increases on a daily basis, scikit-learn is retaining its popularity with ease. Scikit-learn makes the common use-cases in machine learning - clustering, classification, dimensionality reduction and regression - incredibly easy. In this course, Preparing Data for Modeling with scikit-learn, you will gain the ability to appropriately pre-process data, identify outliers and apply kernel approximations. First, you will learn how pre-processing techniques such as standardization and scaling help improve the efficacy of ML algorithms. Next, you will discover how novelty and outlier detection is implemented in scikit-learn. Then, you will understand the typical set of steps needed to work with both text and image data in scikit-learn. Finally, you will round out your knowledge by applying implicit and explicit kernel transformations to transform data into higher dimensions. When you’re finished with this course, you will have the skills and knowledge to identify the correct data pre-processing technique for your use-case and detect outliers using theoretically robust techniques.
Taught by
Janani Ravi
Related Courses
4.0 Shades of Digitalisation for the Chemical and Process IndustriesUniversity of Padova via FutureLearn A Day in the Life of a Data Engineer
Amazon Web Services via AWS Skill Builder FinTech for Finance and Business Leaders
ACCA via edX Accounting Data Analytics
University of Illinois at Urbana-Champaign via Coursera Accounting Data Analytics
Coursera