Modeling Streaming Data for Processing with Apache Beam
Offered By: Pluralsight
Course Description
Overview
The Apache Beam unified model allows us to process batch as well as streaming data using the same API. Several execution backends such as Google Cloud Dataflow, Apache Spark, and Apache Flink are compatible with Beam.
Streaming data usually needs to be processed real-time or near real-time which means stream processing systems need to have capabilities that allow them to process data with low latency, high performance and fault-tolerance. In this course, Modeling Streaming Data for Processing with Apache Beam, you will gain the ability to work with streams and use the Beam unified model to build data parallel pipelines. First, you will explore the similarities and differences between batch processing and stream processing. Next, you will discover the Apache Beam APIs which allow one to define pipelines that process batch as well as streaming data. Finally, you will learn how windowing operations can be applied to streaming data. When you are finished with this course, you will have a strong grasp of the models and architectures used with streaming data and be able to work with the Beam unified model to define and run transformations on input streams.
Streaming data usually needs to be processed real-time or near real-time which means stream processing systems need to have capabilities that allow them to process data with low latency, high performance and fault-tolerance. In this course, Modeling Streaming Data for Processing with Apache Beam, you will gain the ability to work with streams and use the Beam unified model to build data parallel pipelines. First, you will explore the similarities and differences between batch processing and stream processing. Next, you will discover the Apache Beam APIs which allow one to define pipelines that process batch as well as streaming data. Finally, you will learn how windowing operations can be applied to streaming data. When you are finished with this course, you will have a strong grasp of the models and architectures used with streaming data and be able to work with the Beam unified model to define and run transformations on input streams.
Taught by
Janani Ravi
Related Courses
Feature EngineeringGoogle Cloud via Coursera Feature Engineering 日本語版
Google Cloud via Coursera Feature Engineering em Português Brasileiro
Google Cloud via Coursera GCP: Complete Google Data Engineer and Cloud Architect Guide
Udemy Data Science on Google Cloud Platform: Building Data Pipelines
LinkedIn Learning