Launching into Machine Learning
Offered By: Pluralsight
Course Description
Overview
Starting from a history of machine learning, we discuss why neural networks today perform so well in a variety of problems. We then discuss how to set up a supervised learning problem and find a good solution using gradient descent. This involves creating datasets that permit generalization; we talk about methods of doing so in a repeatable way so as to support experimentation.
Starting from a history of machine learning, we discuss why neural networks today perform so well in a variety of problems. We then discuss how to set up a supervised learning problem and find a good solution using gradient descent. This involves creating datasets that permit generalization; we talk about methods of doing so in a repeatable way so as to support experimentation.
Starting from a history of machine learning, we discuss why neural networks today perform so well in a variety of problems. We then discuss how to set up a supervised learning problem and find a good solution using gradient descent. This involves creating datasets that permit generalization; we talk about methods of doing so in a repeatable way so as to support experimentation.
Taught by
Google Cloud
Related Courses
Machine LearningUniversity of Washington via Coursera Machine Learning
Stanford University via Coursera Machine Learning
Georgia Institute of Technology via Udacity Statistical Learning with R
Stanford University via edX Machine Learning 1—Supervised Learning
Brown University via Udacity