Introduction to Reliable Deep Learning
Offered By: Pluralsight
Course Description
Overview
This course introduces you to the world of reliable deep learning, a critical discipline focused on developing machine learning models that not only make accurate predictions but also understand and communicate their own uncertainty.
This course introduces you to the world of reliable deep learning, a critical discipline focused on developing machine learning models that not only make accurate predictions but also understand and communicate their own uncertainty. You'll learn how to create AI systems that are trustworthy, robust, and adaptable, particularly in high-stakes scenarios where errors can have significant consequences.
This course introduces you to the world of reliable deep learning, a critical discipline focused on developing machine learning models that not only make accurate predictions but also understand and communicate their own uncertainty. You'll learn how to create AI systems that are trustworthy, robust, and adaptable, particularly in high-stakes scenarios where errors can have significant consequences.
Syllabus
- Introduction 0mins
- Fundamentals of Reliable Deep Learning 0mins
- Summary 0mins
Taught by
Google Cloud
Related Courses
Data Science: Inferential Thinking through SimulationsUniversity of California, Berkeley via edX Decision Making Under Uncertainty: Introduction to Structured Expert Judgment
Delft University of Technology via edX Probabilistic Deep Learning with TensorFlow 2
Imperial College London via Coursera Agent Based Modeling
The National Centre for Research Methods via YouTube Sampling in Python
DataCamp