Improving Retrieval with RAG Fine-tuning
Offered By: Pluralsight
Course Description
Overview
Learn effective ways to adapt and optimize RAG models. This course will teach techniques for Fine-tuning RAG models using different methods, such as task-specific, domain adaptation, and multi-task fine-tuning.
Understand how to adapt and optimize RAG models. In this course, Improving Retrieval with RAG Fine-tuning, you’ll gain the ability to fine-tune RAG models using various techniques. First, you’ll explore task-specific fine-tuning using BERT. Next, you’ll discover domain adaptation fine-tuning using GPT. Finally, you’ll learn multi-task fine-tuning using T5. When you finish this course, you’ll have the skills and knowledge to adapt and optimize RAG models for specific domains or datasets.
Understand how to adapt and optimize RAG models. In this course, Improving Retrieval with RAG Fine-tuning, you’ll gain the ability to fine-tune RAG models using various techniques. First, you’ll explore task-specific fine-tuning using BERT. Next, you’ll discover domain adaptation fine-tuning using GPT. Finally, you’ll learn multi-task fine-tuning using T5. When you finish this course, you’ll have the skills and knowledge to adapt and optimize RAG models for specific domains or datasets.
Syllabus
- Adapt and Fine-tune RAG models 20mins
Taught by
Dhiraj Kumar
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent