Improving Retrieval with RAG Fine-tuning
Offered By: Pluralsight
Course Description
Overview
Learn effective ways to adapt and optimize RAG models. This course will teach techniques for Fine-tuning RAG models using different methods, such as task-specific, domain adaptation, and multi-task fine-tuning.
Understand how to adapt and optimize RAG models. In this course, Improving Retrieval with RAG Fine-tuning, you’ll gain the ability to fine-tune RAG models using various techniques. First, you’ll explore task-specific fine-tuning using BERT. Next, you’ll discover domain adaptation fine-tuning using GPT. Finally, you’ll learn multi-task fine-tuning using T5. When you finish this course, you’ll have the skills and knowledge to adapt and optimize RAG models for specific domains or datasets.
Understand how to adapt and optimize RAG models. In this course, Improving Retrieval with RAG Fine-tuning, you’ll gain the ability to fine-tune RAG models using various techniques. First, you’ll explore task-specific fine-tuning using BERT. Next, you’ll discover domain adaptation fine-tuning using GPT. Finally, you’ll learn multi-task fine-tuning using T5. When you finish this course, you’ll have the skills and knowledge to adapt and optimize RAG models for specific domains or datasets.
Syllabus
- Adapt and Fine-tune RAG models 20mins
Taught by
Dhiraj Kumar
Related Courses
Structuring Machine Learning ProjectsDeepLearning.AI via Coursera Структурирование проектов по машинному обучению
DeepLearning.AI via Coursera 머신 러닝 프로젝트 구조화
DeepLearning.AI via Coursera Stanford CS330: Deep Multi-Task and Meta Learning
Stanford University via YouTube Stanford Seminar - The Next Generation of Robot Learning
Stanford University via YouTube