Designing and Implementing Solutions Using Google Machine Learning APIs
Offered By: Pluralsight
Course Description
Overview
Most organizations wish to harness the power of machine learning (ML) to improve their products, but they may not always have the expertise available in-house. This course shows you how to harness the power of ML for use cases using API calls.
The Google Cloud Platform makes a wide range of machine learning (ML) services available as a part of Google Cloud AI. Google Cloud Machine Learning APIs are the most accessible and lightweight service which makes powerful ML models available to even novice programmers using simple, intuitive APIs. In this course, Designing and Implementing Solutions Using Google Machine Learning APIs, you'll learn how you can use and work with Google Machine Learning APIs, which makes powerful pre-trained models on Google’s datasets. First, you'll delve into an overview of the machine learning services suite available on the Google Cloud, and understand the features of each so you can make the right choice about what service makes sense for your use case. Next, you'll discover speech-based APIs allowing you to convert speech-to-text and text-to-speech with additional emphasis support using SSML, and how you can call these REST APIs using simple Python libraries. Then, you'll learn about Natural Language APIs and see how they can be used for sentiment analysis and for language translation. Finally, you'll explore the Vision and Video Intelligence APIs in order to perform face and label detection on images. By the end of this course, you'll have the necessary knowledge to choose the right ML API that fits your use case and use multiple APIs together to build more complex features for your product.
The Google Cloud Platform makes a wide range of machine learning (ML) services available as a part of Google Cloud AI. Google Cloud Machine Learning APIs are the most accessible and lightweight service which makes powerful ML models available to even novice programmers using simple, intuitive APIs. In this course, Designing and Implementing Solutions Using Google Machine Learning APIs, you'll learn how you can use and work with Google Machine Learning APIs, which makes powerful pre-trained models on Google’s datasets. First, you'll delve into an overview of the machine learning services suite available on the Google Cloud, and understand the features of each so you can make the right choice about what service makes sense for your use case. Next, you'll discover speech-based APIs allowing you to convert speech-to-text and text-to-speech with additional emphasis support using SSML, and how you can call these REST APIs using simple Python libraries. Then, you'll learn about Natural Language APIs and see how they can be used for sentiment analysis and for language translation. Finally, you'll explore the Vision and Video Intelligence APIs in order to perform face and label detection on images. By the end of this course, you'll have the necessary knowledge to choose the right ML API that fits your use case and use multiple APIs together to build more complex features for your product.
Syllabus
- Course Overview 2mins
- Introducing the Google Cloud ML APIs 22mins
- Working with Speech and Text Using the Cloud ML APIs 31mins
- Working with Language Using the Cloud ML APIs 18mins
- Working with Images and Videos Using the Cloud ML APIs 22mins
Taught by
Janani Ravi
Related Courses
FinTech for Finance and Business LeadersACCA via edX Accounting Data Analytics
University of Illinois at Urbana-Champaign via Coursera Advanced AI on Microsoft Azure: Ethics and Laws, Research Methods and Machine Learning
Cloudswyft via FutureLearn Ethics, Laws and Implementing an AI Solution on Microsoft Azure
Cloudswyft via FutureLearn Post Graduate Certificate in Advanced Machine Learning & AI
Indian Institute of Technology Roorkee via Coursera