Federated Learning and Privacy-preserving RAGs
Offered By: Pluralsight
Course Description
Overview
Learn federated learning and privacy-preserving techniques. This course will teach you how to architect AI solutions while ensuring data privacy in Retrieval-Augmented Generation (RAG) systems.
More and more organizations would like to implement Retrieval-Augmented Generation (RAG) solutions to enhance their customer experience integrating privacy-preserving techniques ensuring data security and regulatory compliance. In this course, Federated Learning and Privacy-preserving RAGs, you’ll learn to design and implement advanced AI systems that prioritize data privacy without sacrificing performance. First, you’ll explore the fundamentals of federated learning, including its principles and how it enables decentralized data processing. Next, you’ll discover how to integrate privacy-preserving techniques into RAG models, such as homomorphic encryption and differential privacy, to safeguard sensitive information. Finally, you’ll learn to implement these concepts practically, developing and deploying RAG systems that adhere to privacy regulations and protect user data. When you’re finished with this course, you’ll have the skills and knowledge needed to create robust, privacy-conscious RAG solutions that enhance AI performance while maintaining strict data protection standards.
More and more organizations would like to implement Retrieval-Augmented Generation (RAG) solutions to enhance their customer experience integrating privacy-preserving techniques ensuring data security and regulatory compliance. In this course, Federated Learning and Privacy-preserving RAGs, you’ll learn to design and implement advanced AI systems that prioritize data privacy without sacrificing performance. First, you’ll explore the fundamentals of federated learning, including its principles and how it enables decentralized data processing. Next, you’ll discover how to integrate privacy-preserving techniques into RAG models, such as homomorphic encryption and differential privacy, to safeguard sensitive information. Finally, you’ll learn to implement these concepts practically, developing and deploying RAG systems that adhere to privacy regulations and protect user data. When you’re finished with this course, you’ll have the skills and knowledge needed to create robust, privacy-conscious RAG solutions that enhance AI performance while maintaining strict data protection standards.
Syllabus
- Evaluating RAG Solutions 16mins
Taught by
Luca Berton
Related Courses
Introduction to Data Analytics for BusinessUniversity of Colorado Boulder via Coursera Digital and the Everyday: from codes to cloud
NPTEL via Swayam Systems and Application Security
(ISC)² via Coursera Protecting Health Data in the Modern Age: Getting to Grips with the GDPR
University of Groningen via FutureLearn Teaching Impacts of Technology: Data Collection, Use, and Privacy
University of California, San Diego via Coursera