Efficient Data Feeding and Labeling for Model Training
Offered By: Pluralsight
Course Description
Overview
Creating data models using machine learning requires effective training data. This course will teach you how to feed your data model’s training process using data labeling for supervised training and unlabeled data for semi-supervised training.
Machine learning data models are only as effective as their training data. In this course, Efficient Data Feeding and Labeling for Model Training, you’ll gain the ability to finalize the preparation of your training data and choose the most appropriate manner to feed it into your data model training. First, you’ll explore the meaning of data feeding and common techniques. Next, you’ll discover data labeling for supervised learning, followed by unlabeled data for semi-supervised learning. Finally, you’ll learn how to employ data labeling tools. When you’re finished with this course, you’ll have the skills and knowledge of data labeling and feeding needed to train machine learning data models.
Machine learning data models are only as effective as their training data. In this course, Efficient Data Feeding and Labeling for Model Training, you’ll gain the ability to finalize the preparation of your training data and choose the most appropriate manner to feed it into your data model training. First, you’ll explore the meaning of data feeding and common techniques. Next, you’ll discover data labeling for supervised learning, followed by unlabeled data for semi-supervised learning. Finally, you’ll learn how to employ data labeling tools. When you’re finished with this course, you’ll have the skills and knowledge of data labeling and feeding needed to train machine learning data models.
Syllabus
- Course Overview 1min
- Data Feeding 13mins
- Data Labeling 17mins
Taught by
Dan Hermes
Related Courses
Machine LearningUniversity of Washington via Coursera Machine Learning
Stanford University via Coursera Machine Learning
Georgia Institute of Technology via Udacity Statistical Learning with R
Stanford University via edX Machine Learning 1—Supervised Learning
Brown University via Udacity