Detect Anomalies in Game Transactions with ML and Sagemaker
Offered By: Pluralsight
Course Description
Overview
Game studios that are building and operating multiple games tend to redo much of the server-side validation of transactional data received from game clients.
Game studios that are building and operating multiple games tend to redo much of the server-side validation of transactional data received from game clients. This course covers the use of a central model (or multiple models per game) for offloading server processing and improving server response time. The course reviews the different anomalies associated with game transaction data and how machine learning (ML) can help perform validations.
Game studios that are building and operating multiple games tend to redo much of the server-side validation of transactional data received from game clients. This course covers the use of a central model (or multiple models per game) for offloading server processing and improving server response time. The course reviews the different anomalies associated with game transaction data and how machine learning (ML) can help perform validations.
Taught by
AWS
Related Courses
Communicating Data Science ResultsUniversity of Washington via Coursera Cloud Computing Applications, Part 2: Big Data and Applications in the Cloud
University of Illinois at Urbana-Champaign via Coursera Cloud Computing Infrastructure
University System of Maryland via edX Google Cloud Platform for AWS Professionals
Google via Coursera Introduction to Apache Spark and AWS
University of London International Programmes via Coursera